Dynamical behavior of generic quintessence potentials: Constraints on key dark energy observables

We perform a comprehensive study of a class of dark energy models--scalar field models where the effective potential can be described by a polynomial series--exploring their dynamical behavior using the method of flow equations that has previously been applied to inflationary models. Using supernova, baryon oscillation, cosmic microwave background (CMB) and Hubble constant data, and an implicit theoretical prior imposed by the scalar field dynamics, we find that the {lambda}CDM model provides an excellent fit to the data. Constraints on the generic scalar field potential parameters are presented, along with the reconstructed w(z) histories consistent with the data and the theoretical prior. We propose and pursue computationally feasible algorithms to obtain estimates of the principal components of the equation of state, as well as parameters w{sub 0} and w{sub a}. Further, we use the Monte Carlo Markov chain machinery to simulate future data based on the Joint Dark Energy Mission, Planck, and baryon acoustic oscillation surveys and find that the inverse area figure of merit improves nearly by an order of magnitude. Therefore, most scalar field models that are currently consistent with data can be potentially ruled out by future experiments. We also comment on the classification of dark energymore » models into thawing and freezing in light of the more diverse evolution histories allowed by this general class of potentials.« less

[1]  D. Parkinson,et al.  Present and future evidence for evolving dark energy , 2006, astro-ph/0610126.

[2]  G. Robbers,et al.  Impact of three years of data from the Wilkinson Microwave Anisotropy Probe on cosmological models with dynamical dark energy , 2006, astro-ph/0609814.

[3]  H. Peiris,et al.  Preprint typeset in JHEP style- HYPER VERSION Slow Roll Reconstruction: Constraints on Inflation , 2006 .

[4]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[5]  L. Knox,et al.  Weighing the Universe with Photometric Redshift Surveys and the Impact on Dark Energy Forecasts , 2006, astro-ph/0605536.

[6]  C. Stephan-Otto Optimized supernova constraints on dark energy evolution , 2006, astro-ph/0605403.

[7]  H. Peiris,et al.  Recovering the inflationary potential and primordial power spectrum with a slow roll prior: methodology and application to WMAP three year data , 2006, astro-ph/0603587.

[8]  L. Knox,et al.  Reduction of cosmological data for the detection of time-varying dark energy density , 2006, astro-ph/0603247.

[9]  A. Moss,et al.  Anisotropic perturbations due to dark energy , 2006, astro-ph/0602377.

[10]  F. Simpson,et al.  Redshift sensitivities of dark energy surveys , 2006, astro-ph/0602213.

[11]  E. Linder The Paths of Quintessence , 2006, astro-ph/0601052.

[12]  Gong-Bo Zhao,et al.  Observing dark energy dynamics with supernova, microwave background and galaxy clustering , 2005, astro-ph/0511625.

[13]  L. Perivolaropoulos,et al.  Comparison of the legacy and gold type Ia supernovae dataset constraints on dark energy models , 2005, astro-ph/0511040.

[14]  T. Chiba w and w' of Scalar Field Models of Dark Energy in the Large , 2005, astro-ph/0510598.

[15]  R. Nichol,et al.  Universal fitting formulae for baryon oscillation surveys , 2005, astro-ph/0510239.

[16]  R. Scherrer Dark energy models in the w-w' plane , 2005, astro-ph/0509890.

[17]  D. Parkinson,et al.  Direct reconstruction of the quintessence potential , 2005, astro-ph/0506696.

[18]  E. Linder,et al.  Limits of quintessence. , 2005, Physical review letters.

[19]  A. Shafieloo,et al.  Smoothing supernova data to reconstruct the expansion history of the universe , 2005, astro-ph/0505329.

[20]  D. Huterer,et al.  How many dark energy parameters , 2005, astro-ph/0505330.

[21]  S. Hannestad Constraints on the sound speed of dark energy , 2005, astro-ph/0504017.

[22]  G. Bernstein,et al.  Dark Energy Constraints from the CTIO Lensing Survey , 2005, astro-ph/0502243.

[23]  Max Tegmark,et al.  Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae , 2005, astro-ph/0501351.

[24]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[25]  L. Verde,et al.  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[26]  P. Steinhardt,et al.  Dynamical dark energy: Current constraints and forecasts , 2004, astro-ph/0411803.

[27]  R. Nichol,et al.  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[28]  M. Kunz,et al.  The Essence of Quintessence and the Cost of Compression , 2004, astro-ph/0407364.

[29]  E. Mortsell,et al.  Cosmological constraints on the dark energy equation of state and its evolution , 2004, astro-ph/0407259.

[30]  B. Bassett Optimizing cosmological surveys in a crowded market , 2004, astro-ph/0407201.

[31]  M. Kunz,et al.  Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe , 2004, astro-ph/0406608.

[32]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[33]  A. Goobar,et al.  No evidence for dark energy metamorphosis , 2004, astro-ph/0404468.

[34]  Xinmin Zhang,et al.  Dark energy constraints from the cosmic age and supernova , 2004, astro-ph/0404224.

[35]  D. Huterer,et al.  Uncorrelated estimates of dark energy evolution , 2004, astro-ph/0404062.

[36]  A. Starobinsky,et al.  The case for dynamical dark energy revisited , 2004, astro-ph/0403687.

[37]  S. Djorgovski,et al.  Direct Determination of the Kinematics of the Universe and Properties of the Dark Energy as Functions of Redshift , 2004, astro-ph/0403664.

[38]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[39]  B. Jain,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[40]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[41]  A. Liddle Inflationary flow equations , 2003, astro-ph/0307286.

[42]  J. Weller,et al.  Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.

[43]  O. Dor'e,et al.  Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP , 2003, astro-ph/0307100.

[44]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[45]  A. Melchiorri,et al.  The state of the dark energy equation of state , 2002, astro-ph/0211522.

[46]  R. Easther,et al.  Monte Carlo reconstruction of the inflationary potential , 2002, astro-ph/0210345.

[47]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[48]  J. Frieman,et al.  Probing dark energy with supernovae: Exploiting complementarity with the cosmic microwave background , 2002, astro-ph/0208100.

[49]  Wayne Hu Dark energy and matter evolution from lensing tomography , 2002, astro-ph/0208093.

[50]  D. Huterer,et al.  Parametrization of dark-energy properties: a principal-component approach. , 2002, Physical review letters.

[51]  W. Kinney Inflation: Flow, fixed points and observables to arbitrary order in slow roll , 2002, astro-ph/0206032.

[52]  R. Jimenez,et al.  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[53]  E. Copeland,et al.  Model independent approach to the dark energy equation of state , 2002, astro-ph/0205544.

[54]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[55]  U. Cambridge,et al.  Probing quintessence: reconstruction and parameter estimation from supernovae , 2002, astro-ph/0201336.

[56]  P. Steinhardt,et al.  Measuring the equation of state of the universe: Pitfalls and prospects , 2001, astro-ph/0112526.

[57]  D. Weinberg,et al.  Prospects for Determining the Equation of State of the Dark Energy: What Can Be Learned from Multiple Observables? , 2001, astro-ph/0112221.

[58]  C. Skordis,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001, astro-ph/0109232.

[59]  D. Huterer,et al.  Weak lensing and dark energy , 2001, astro-ph/0106399.

[60]  J. Weller,et al.  Future supernovae observations as a probe of dark energy , 2001, astro-ph/0106079.

[61]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[62]  Michael S. Turner,et al.  PROBING DARK ENERGY: METHODS AND STRATEGIES , 2000, astro-ph/0012510.

[63]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[64]  A. Albrecht,et al.  Opportunities for future supernova studies of cosmic acceleration. , 2000, Physical review letters.

[65]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[66]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[67]  M. Turner,et al.  Kinematic constraints to the key inflationary observables , 2000, astro-ph/0006321.

[68]  P. González-Díaz Cosmological models from quintessence , 2000, astro-ph/0004125.

[69]  A. Starobinsky,et al.  Reconstructing the cosmic equation of state from supernova distances. , 1999, Physical review letters.

[70]  A. Liddle,et al.  Inflaton potential reconstruction without slow roll , 1999, astro-ph/9906327.

[71]  D. Huterer,et al.  Gravitational Lensing as a Probe of Quintessence , 1999, astro-ph/9901097.

[72]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[73]  T. Chiba,et al.  Determining the equation of state of the expanding Universe: inverse problem in cosmology , 1998, astro-ph/9810447.

[74]  A. Starobinsky,et al.  How to determine an effective potential for a variable cosmological term , 1998, astro-ph/9810431.

[75]  A. Liddle,et al.  A Classification of scalar field potentials with cosmological scaling solutions , 1998, astro-ph/9809272.

[76]  D. Huterer,et al.  Prospects for probing the dark energy via supernova distance measurements , 1998, astro-ph/9808133.

[77]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[78]  Limin Wang,et al.  Quintessence, cosmic coincidence, and the cosmological constant , 1998, astro-ph/9807002.

[79]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[80]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[81]  P. Ferreira,et al.  Cosmology with a primordial scaling field , 1997, astro-ph/9711102.

[82]  Hill,et al.  Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.

[83]  Liddle,et al.  Formalizing the slow-roll approximation in inflation. , 1994, Physical review. D, Particles and fields.

[84]  T. Fleming [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Rejoinder , 1992 .

[85]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[86]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[87]  Edward J. Wollack,et al.  FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) 1 OBSERVATIONS : IMPLICATIONS FOR INFLATION , 2003 .

[88]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .