Dynamical behavior of generic quintessence potentials: Constraints on key dark energy observables
暂无分享,去创建一个
[1] D. Parkinson,et al. Present and future evidence for evolving dark energy , 2006, astro-ph/0610126.
[2] G. Robbers,et al. Impact of three years of data from the Wilkinson Microwave Anisotropy Probe on cosmological models with dynamical dark energy , 2006, astro-ph/0609814.
[3] H. Peiris,et al. Preprint typeset in JHEP style- HYPER VERSION Slow Roll Reconstruction: Constraints on Inflation , 2006 .
[4] R. Nichol,et al. Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.
[5] L. Knox,et al. Weighing the Universe with Photometric Redshift Surveys and the Impact on Dark Energy Forecasts , 2006, astro-ph/0605536.
[6] C. Stephan-Otto. Optimized supernova constraints on dark energy evolution , 2006, astro-ph/0605403.
[7] H. Peiris,et al. Recovering the inflationary potential and primordial power spectrum with a slow roll prior: methodology and application to WMAP three year data , 2006, astro-ph/0603587.
[8] L. Knox,et al. Reduction of cosmological data for the detection of time-varying dark energy density , 2006, astro-ph/0603247.
[9] A. Moss,et al. Anisotropic perturbations due to dark energy , 2006, astro-ph/0602377.
[10] F. Simpson,et al. Redshift sensitivities of dark energy surveys , 2006, astro-ph/0602213.
[11] E. Linder. The Paths of Quintessence , 2006, astro-ph/0601052.
[12] Gong-Bo Zhao,et al. Observing dark energy dynamics with supernova, microwave background and galaxy clustering , 2005, astro-ph/0511625.
[13] L. Perivolaropoulos,et al. Comparison of the legacy and gold type Ia supernovae dataset constraints on dark energy models , 2005, astro-ph/0511040.
[14] T. Chiba. w and w' of Scalar Field Models of Dark Energy in the Large , 2005, astro-ph/0510598.
[15] R. Nichol,et al. Universal fitting formulae for baryon oscillation surveys , 2005, astro-ph/0510239.
[16] R. Scherrer. Dark energy models in the w-w' plane , 2005, astro-ph/0509890.
[17] D. Parkinson,et al. Direct reconstruction of the quintessence potential , 2005, astro-ph/0506696.
[18] E. Linder,et al. Limits of quintessence. , 2005, Physical review letters.
[19] A. Shafieloo,et al. Smoothing supernova data to reconstruct the expansion history of the universe , 2005, astro-ph/0505329.
[20] D. Huterer,et al. How many dark energy parameters , 2005, astro-ph/0505330.
[21] S. Hannestad. Constraints on the sound speed of dark energy , 2005, astro-ph/0504017.
[22] G. Bernstein,et al. Dark Energy Constraints from the CTIO Lensing Survey , 2005, astro-ph/0502243.
[23] Max Tegmark,et al. Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae , 2005, astro-ph/0501351.
[24] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[25] L. Verde,et al. Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.
[26] P. Steinhardt,et al. Dynamical dark energy: Current constraints and forecasts , 2004, astro-ph/0411803.
[27] R. Nichol,et al. Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.
[28] M. Kunz,et al. The Essence of Quintessence and the Cost of Compression , 2004, astro-ph/0407364.
[29] E. Mortsell,et al. Cosmological constraints on the dark energy equation of state and its evolution , 2004, astro-ph/0407259.
[30] B. Bassett. Optimizing cosmological surveys in a crowded market , 2004, astro-ph/0407201.
[31] M. Kunz,et al. Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe , 2004, astro-ph/0406608.
[32] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[33] A. Goobar,et al. No evidence for dark energy metamorphosis , 2004, astro-ph/0404468.
[34] Xinmin Zhang,et al. Dark energy constraints from the cosmic age and supernova , 2004, astro-ph/0404224.
[35] D. Huterer,et al. Uncorrelated estimates of dark energy evolution , 2004, astro-ph/0404062.
[36] A. Starobinsky,et al. The case for dynamical dark energy revisited , 2004, astro-ph/0403687.
[37] S. Djorgovski,et al. Direct Determination of the Kinematics of the Universe and Properties of the Dark Energy as Functions of Redshift , 2004, astro-ph/0403664.
[38] R. Nichol,et al. Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.
[39] B. Jain,et al. Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.
[40] D. Eisenstein,et al. Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.
[41] A. Liddle. Inflationary flow equations , 2003, astro-ph/0307286.
[42] J. Weller,et al. Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.
[43] O. Dor'e,et al. Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP , 2003, astro-ph/0307100.
[44] Edward J. Wollack,et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .
[45] A. Melchiorri,et al. The state of the dark energy equation of state , 2002, astro-ph/0211522.
[46] R. Easther,et al. Monte Carlo reconstruction of the inflationary potential , 2002, astro-ph/0210345.
[47] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[48] J. Frieman,et al. Probing dark energy with supernovae: Exploiting complementarity with the cosmic microwave background , 2002, astro-ph/0208100.
[49] Wayne Hu. Dark energy and matter evolution from lensing tomography , 2002, astro-ph/0208093.
[50] D. Huterer,et al. Parametrization of dark-energy properties: a principal-component approach. , 2002, Physical review letters.
[51] W. Kinney. Inflation: Flow, fixed points and observables to arbitrary order in slow roll , 2002, astro-ph/0206032.
[52] R. Jimenez,et al. Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.
[53] E. Copeland,et al. Model independent approach to the dark energy equation of state , 2002, astro-ph/0205544.
[54] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[55] U. Cambridge,et al. Probing quintessence: reconstruction and parameter estimation from supernovae , 2002, astro-ph/0201336.
[56] P. Steinhardt,et al. Measuring the equation of state of the universe: Pitfalls and prospects , 2001, astro-ph/0112526.
[57] D. Weinberg,et al. Prospects for Determining the Equation of State of the Dark Energy: What Can Be Learned from Multiple Observables? , 2001, astro-ph/0112221.
[58] C. Skordis,et al. The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001, astro-ph/0109232.
[59] D. Huterer,et al. Weak lensing and dark energy , 2001, astro-ph/0106399.
[60] J. Weller,et al. Future supernovae observations as a probe of dark energy , 2001, astro-ph/0106079.
[61] M. Fukugita,et al. Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .
[62] Michael S. Turner,et al. PROBING DARK ENERGY: METHODS AND STRATEGIES , 2000, astro-ph/0012510.
[63] M. Chevallier,et al. ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.
[64] A. Albrecht,et al. Opportunities for future supernova studies of cosmic acceleration. , 2000, Physical review letters.
[65] M. Fukugita,et al. CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.
[66] N. Christensen,et al. Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.
[67] M. Turner,et al. Kinematic constraints to the key inflationary observables , 2000, astro-ph/0006321.
[68] P. González-Díaz. Cosmological models from quintessence , 2000, astro-ph/0004125.
[69] A. Starobinsky,et al. Reconstructing the cosmic equation of state from supernova distances. , 1999, Physical review letters.
[70] A. Liddle,et al. Inflaton potential reconstruction without slow roll , 1999, astro-ph/9906327.
[71] D. Huterer,et al. Gravitational Lensing as a Probe of Quintessence , 1999, astro-ph/9901097.
[72] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[73] T. Chiba,et al. Determining the equation of state of the expanding Universe: inverse problem in cosmology , 1998, astro-ph/9810447.
[74] A. Starobinsky,et al. How to determine an effective potential for a variable cosmological term , 1998, astro-ph/9810431.
[75] A. Liddle,et al. A Classification of scalar field potentials with cosmological scaling solutions , 1998, astro-ph/9809272.
[76] D. Huterer,et al. Prospects for probing the dark energy via supernova distance measurements , 1998, astro-ph/9808133.
[77] D. Eisenstein,et al. Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.
[78] Limin Wang,et al. Quintessence, cosmic coincidence, and the cosmological constant , 1998, astro-ph/9807002.
[79] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[80] H. Ford,et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.
[81] P. Ferreira,et al. Cosmology with a primordial scaling field , 1997, astro-ph/9711102.
[82] Hill,et al. Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.
[83] Liddle,et al. Formalizing the slow-roll approximation in inflation. , 1994, Physical review. D, Particles and fields.
[84] T. Fleming. [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Rejoinder , 1992 .
[85] P. Peebles,et al. Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.
[86] C. Wetterich. COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.
[87] Edward J. Wollack,et al. FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) 1 OBSERVATIONS : IMPLICATIONS FOR INFLATION , 2003 .
[88] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .