An improved $${\alpha }$$α-dominance strategy for many-objective optimization problems

The convergence ability of Pareto-based evolutionary algorithms sharply reduces for many objective optimization problems because the solutions are difficult to rank by the Pareto dominance. To increase the selection pressure toward the global optimal solutions and well-maintain the diversity of obtained solutions, in this paper, an improved $${\alpha }$$α-dominance strategy is proposed. The proposal assigns $${\alpha }$$α values based on an elliptic function used to rank the solutions to enhance the convergence pressure, and it can also well maintain the diversity of obtained solutions through assigning different values of $${\alpha }$$α for different solutions, i.e., the solutions whose objective vectors locate in the objective space are assigned a larger $${\alpha }$$α. Experimental results show that the improved $${\alpha }$$α-dominance strategy can guide the searching process to converge to the Pareto Front and maintain the diversity of obtained solutions for many-objective optimization problems.

[1]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[2]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[3]  Tobias Friedrich,et al.  Speeding up many-objective optimization by Monte Carlo approximations , 2013, Artif. Intell..

[4]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[5]  Dario Landa Silva,et al.  Obtaining Better Non-Dominated Sets Using Volume Dominance , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[7]  James H. Torrie,et al.  Principles and procedures of statistics: a biometrical approach (2nd ed) , 1980 .

[8]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[10]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[11]  Hisao Ishibuchi,et al.  Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization , 2007, EMO.

[12]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[13]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[14]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[16]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[17]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization , 2008, 2008 3rd International Workshop on Genetic and Evolving Systems.

[18]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[19]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[20]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[21]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[24]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[25]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[26]  Frank Neumann,et al.  Multiplicative approximations and the hypervolume indicator , 2009, GECCO.

[27]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[28]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[29]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[30]  Antônio de Pádua Braga,et al.  An efficient multi-objective learning algorithm for RBF neural network , 2010, Neurocomputing.

[31]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[32]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[33]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[34]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[35]  G. J. Mitchell,et al.  Principles and procedures of statistics: A biometrical approach , 1981 .

[36]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[37]  Lishan Kang,et al.  A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).