Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids.

Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.

[1]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[2]  Chong-Min Wang,et al.  Correlated substitution in paramagnetic Mn 2+ -doped ZnO epitaxial films , 2009 .

[3]  J. Cheon,et al.  Architectural control of magnetic semiconductor nanocrystals. , 2002, Journal of the American Chemical Society.

[4]  V. Chikán Challenges and Prospects of Electronic Doping of Colloidal Quantum Dots: Case Study of CdSe , 2011 .

[5]  J A Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[6]  B. Shklovskii,et al.  Screening of a macroion by multivalent ions: correlation-induced inversion of charge. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[8]  I. Favier,et al.  New protic salts of aprotic polar solvents , 2004 .

[9]  Y. Levin,et al.  Ion specificity and the theory of stability of colloidal suspensions. , 2011, Physical review letters.

[10]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[11]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[12]  D. Gamelin,et al.  Charge-controlled magnetism in colloidal doped semiconductor nanocrystals , 2010 .

[13]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[14]  G. Strouse,et al.  Involvement of carriers in the size-dependent magnetic exchange for Mn:CdSe quantum dots. , 2011, Journal of the American Chemical Society.

[15]  E. Verwey The Electrical Double Layer and the Stability of Lyophobic Colloids. , 1935 .

[16]  E. Bakkers,et al.  Remote p-doping of InAs nanowires. , 2007, Nano letters.

[17]  Moungi G. Bawendi,et al.  Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals , 2000 .

[18]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[19]  B. Korgel,et al.  Synthesis and Characterization of Dilute Magnetic Semiconductor Manganese-Doped Indium Arsenide Nanocrystals , 2003 .

[20]  T. van Buuren,et al.  Evidence for ligand-induced paramagnetism in CdSe quantum dots. , 2009, Journal of the American Chemical Society.

[21]  Boris I Shklovskii,et al.  Colloquium: The physics of charge inversion in chemical and biological systems , 2002 .

[22]  F. Farges Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials , 2005 .

[23]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[24]  A. Alivisatos,et al.  Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. , 2011, Angewandte Chemie.

[25]  Mercouri G Kanatzidis,et al.  Platinum chalcogenido MCM-41 analogues. High hexagonal order in mesostructured semiconductors based on Pt(2+) and [Ge(4)Q(10)](4-) (Q = S, Se) and [Sn(4)Se(10)](4-) adamantane clusters. , 2002, Journal of the American Chemical Society.

[26]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[27]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[28]  D. Gamelin,et al.  Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications , 2005 .

[29]  R. Greegor,et al.  Discussion of x-ray-absorption near-edge structure: Application to Cu in the high-Tc superconductors La1.8Sr , 1988, Physical review. B, Condensed matter.

[30]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[31]  M. Stefan,et al.  In-depth investigation of EPR spectra of Mn2+ ions in ZnS single crystals with pure cubic structure , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Antonia Mallardi,et al.  Development of a novel enzyme/semiconductor nanoparticles system for biosensor application , 2002 .

[33]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[34]  M. Kastner,et al.  Charge transport in mixed CdSe and CdTe colloidal nanocrystal films , 2010 .

[35]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[36]  J. Chelikowsky,et al.  Role of confinement on diffusion barriers in semiconductor nanocrystals. , 2009, Physical review letters.

[37]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[38]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[39]  D. Lichtenberger,et al.  Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. , 2007, Inorganic chemistry.

[40]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[41]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[42]  V. Fedorov,et al.  Ion exchange in II-VI crystals: Thermodynamics, kinetics, and technology , 1993 .

[43]  C. Prieto,et al.  X-ray absorption study of the local order around Mn in Mn:ZnO thin films: the role of vacancies and structural distortions , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[45]  M. Kovalenko,et al.  Nanocrystal superlattices with thermally degradable hybrid inorganic-organic capping ligands. , 2010, Journal of the American Chemical Society.

[46]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[47]  Prashant K. Jain,et al.  Nanoheterostructure cation exchange: anionic framework conservation. , 2010, Journal of the American Chemical Society.

[48]  Cherie R. Kagan,et al.  Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. , 2011, Journal of the American Chemical Society.

[49]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[50]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[51]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[52]  N. Yao,et al.  High-Quality Manganese-Doped ZnSe Nanocrystals , 2001 .

[53]  D. Magana,et al.  Switching-on superparamagnetism in Mn/CdSe quantum dots. , 2006, Journal of the American Chemical Society.

[54]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[55]  P. Mulvaney,et al.  From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry. , 2007, Journal of the American Chemical Society.

[56]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[57]  M. Kovalenko,et al.  Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. , 2010, Journal of the American Chemical Society.

[58]  R. Morris Bullock,et al.  A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s−1 for H2 Production , 2011, Science.

[59]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .

[60]  L. Lévy,et al.  Unusual static and dynamic magnetic properties of Cd1−yMnyS nanocrystals , 2000 .

[61]  J. Faraudo,et al.  Interaction of monovalent ions with hydrophobic and hydrophilic colloids: charge inversion and ionic specificity. , 2011, Journal of the American Chemical Society.

[62]  G M Khattak,et al.  Characteristics of deep levels in n-type CdTe , 1991 .

[63]  Jacek K. Furdyna,et al.  Diluted magnetic semiconductors , 1988 .