Performance Comparison of Optimization Methods for Blind Deconvolution

There are many methods that will solve highdimensional regression problems, and choosing an appropriate method can be challenging. For some problems, accuracy holds precedence over speed whereas in other instances speed is required for a large number of problem sets. In this paper we study the performance of several methods that solve the multiframe blind deconvolution problem by comparing speed and accuracy of each algorithm, highlighting the merits of each algorithm.

[1]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[2]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[3]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[4]  Siam Rfview,et al.  CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .

[5]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[6]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[7]  Tamara G. Kolda,et al.  Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization , 2010 .

[8]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[9]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[10]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[11]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[12]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[13]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[14]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[15]  Stuart Jefferies,et al.  Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects. , 2009, Applied optics.

[16]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[17]  Jan Vlček,et al.  Shifted limited-memory variable metric methods for large-scale unconstrained optimization , 2006 .

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Brian D. Fisher,et al.  University of British Columbia , 2002, INTR.

[20]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[21]  Laurent Garcia,et al.  ∃-asp , 2015, JOWO@IJCAI.

[22]  Academy of Sciences of the Czech Republic , 2019, The Grants Register 2020.