Cooperative Multifunctional Self‐Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery

[1]  Graham M. Gibson,et al.  Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers , 2015, Scientific Reports.

[2]  Yun-qiang Wang,et al.  Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. , 2018, The Science of the total environment.

[3]  F. Zunino,et al.  Synthesis and antitumor activity of a platinum (II)-doxorubicin complex , 2004, Cancer Chemotherapy and Pharmacology.

[4]  P. Kantoff,et al.  Cancer nanomedicine: progress, challenges and opportunities , 2016, Nature Reviews Cancer.

[5]  K. Davies The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress , 1999, IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology.

[6]  Oliver G Schmidt,et al.  Sperm-Hybrid Micromotor for Targeted Drug Delivery. , 2017, ACS nano.

[7]  B. Halliwell,et al.  Hydrogen peroxide in the human body , 2000, FEBS letters.

[8]  W. Xi,et al.  Self-propelled nanotools. , 2012, ACS nano.

[9]  Samuel Sanchez,et al.  Enzyme‐Powered Nanobots Enhance Anticancer Drug Delivery , 2018 .

[10]  Zhiguang Wu,et al.  Self-propelled polymer-based multilayer nanorockets for transportation and drug release. , 2013, Angewandte Chemie.

[11]  Berta Esteban-Fernández de Ávila,et al.  Micromotors for "Chemistry-on-the-Fly". , 2018, Journal of the American Chemical Society.

[12]  Filiz Kuralay,et al.  Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. , 2012, Journal of the American Chemical Society.

[13]  Samuel Sanchez,et al.  Transport of cargo by catalytic Janus micro-motors , 2012 .

[14]  P. Hewett,et al.  Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue , 1993, In Vitro Cellular & Developmental Biology - Animal.

[15]  Salvador Pané,et al.  Magnetoelectric micromachines with wirelessly controlled navigation and functionality , 2016 .

[16]  Susana Campuzano,et al.  Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. , 2017, ACS nano.

[17]  Li Zhang,et al.  Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. , 2014, Small.

[18]  G. Fonnum,et al.  Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy , 2005 .

[19]  Qianwang Chen,et al.  Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings , 2007 .

[20]  Xiaomiao Feng,et al.  Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. , 2013, Journal of the American Chemical Society.

[21]  Won Gu Lee,et al.  Cell manipulation in microfluidics , 2013, Biofabrication.

[22]  Iqbal Ahmad,et al.  Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. , 2012, Biomaterials.

[23]  A. Gast,et al.  Rotational dynamics of semiflexible paramagnetic particle chains. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Daniela A Wilson,et al.  Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery , 2017, ACS nano.

[25]  Samuel Sanchez,et al.  Controlled manipulation of multiple cells using catalytic microbots. , 2011, Chemical communications.

[26]  B. Nelson,et al.  Hard-magnetic cell microscaffolds from electroless coated 3D printed architectures , 2018 .

[27]  Liangfang Zhang,et al.  Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. , 2017, Nanoscale.

[28]  Alberto Escarpa,et al.  RBC micromotors carrying multiple cargos towards potential theranostic applications. , 2015, Nanoscale.

[29]  Joseph Wang,et al.  Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification , 2017, Science Robotics.

[30]  R. M. Westervelt,et al.  Dielectrophoresis tweezers for single cell manipulation , 2006, Biomedical microdevices.

[31]  K. Davies,et al.  Transient adaptation of oxidative stress in mammalian cells. , 1995, Archives of biochemistry and biophysics.

[32]  J Wang,et al.  Self-propelled affinity biosensors: Moving the receptor around the sample. , 2016, Biosensors & bioelectronics.

[33]  Ramin Golestanian,et al.  Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Xuejiao Zhou,et al.  Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots , 2013, Scientific Reports.

[35]  Oliver G Schmidt,et al.  Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. , 2016, Nano letters.

[36]  Martin Pumera,et al.  Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs , 2018 .

[37]  Susana Campuzano,et al.  Micromachine-enabled capture and isolation of cancer cells in complex media. , 2011, Angewandte Chemie.

[38]  Mingjun Xuan,et al.  Self-propelled Janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Martin Pumera,et al.  Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules , 2017 .

[40]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[41]  Archana Singh,et al.  Magnetic Field Guided Chemotaxis of iMushbots for Targeted Anticancer Therapeutics. , 2017, ACS biomaterials science & engineering.

[42]  Mark A. Hayes,et al.  Video microscopy of dynamically aggregated paramagnetic particle chains in an applied rotating magnetic field , 2003 .

[43]  Liangfang Zhang,et al.  Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors , 2018 .

[44]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[45]  Alberto Escarpa,et al.  Perspectives on Janus micromotors: Materials and applications , 2017 .

[46]  Berta Esteban-Fernández de Ávila,et al.  Micromotor-enabled active drug delivery for in vivo treatment of stomach infection , 2017, Nature Communications.

[47]  Jianguo Guan,et al.  Micro‐/Nanorobots at Work in Active Drug Delivery , 2018 .

[48]  Ekambaram Perumal,et al.  Iron Oxide Nanoparticles Induces Cell Cycle-Dependent Neuronal Apoptosis in Mice , 2018, Journal of Molecular Neuroscience.

[49]  C. Elliott,et al.  Maximizing Capture Efficiency and Specificity of Magnetic Separation for Mycobacterium avium subsp. paratuberculosis Cells , 2010, Applied and Environmental Microbiology.

[50]  N. Rapoport,et al.  Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. , 2010, Molecular pharmaceutics.