Divisive Monothetic Clustering for Interval and Histogram-valued Data
暂无分享,去创建一个
[1] Thierry Denoeux,et al. Multidimensional scaling of interval-valued dissimilarity data , 2000, Pattern Recognit. Lett..
[2] Daniel Boley,et al. Principal Direction Divisive Partitioning , 1998, Data Mining and Knowledge Discovery.
[3] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[4] Lawrence Carin,et al. Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.
[5] Yves Lechevallier,et al. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data , 2006, Pattern Recognit. Lett..
[6] Carlos Maté,et al. Electric power demand forecasting using interval time series: A comparison between VAR and iMLP , 2010 .
[7] Fabio Spagnolo,et al. Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting , 2006 .
[8] F. Coolen,et al. Interval-valued regression and classication models in the framework of machine learning , 2011 .
[9] Ahlame Douzal-Chouakria. Extension des méthodes d'analyse factorielles à des données de type intervalle , 1998 .
[10] Ivan P. Gavrilyuk. Book Review: Introduction to interval analysis , 2010 .
[11] Edwin Diday,et al. I-Scal: Multidimensional scaling of interval dissimilarities , 2006, Comput. Stat. Data Anal..
[12] Jonathan H. Wright,et al. Bayesian Model Averaging and Exchange Rate Forecasts , 2003 .
[13] Chun-Houh Chen. GENERALIZED ASSOCIATION PLOTS: INFORMATION VISUALIZATION VIA ITERATIVELY GENERATED CORRELATION MATRICES , 2002 .
[14] Paula Brito. Use of Pyramids in Symbolic Data Analysis , 1994 .
[15] KC Gowda,et al. Disaggregative Clustering Using the Concept of Mutual Nearest Neighborhood , 1978 .
[16] Javier Arroyo,et al. iMLP: Applying Multi-Layer Perceptrons to Interval-Valued Data , 2007, Neural Processing Letters.
[17] W. T. Williams,et al. Dissimilarity Analysis: a new Technique of Hierarchical Sub-division , 1964, Nature.
[18] Sanjiv Sabherwal,et al. Forecasting exchange rates: Do banks know better? , 2002 .
[19] P. Bertrand,et al. Descriptive Statistics for Symbolic Data , 2000 .
[20] H. Shirato,et al. A mathematical model of the volume effect which postulates cell migration from unirradiated tissues. , 1995, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.
[21] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[22] J. Arroyo,et al. Forecasting histogram time series with k-nearest neighbours methods , 2009 .
[23] Chun-Houh Chen,et al. GAP: A graphical environment for matrix visualization and cluster analysis , 2010, Comput. Stat. Data Anal..
[24] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[25] H. Shirato,et al. Theoretical Comparison between Availabilities of Single- and Fractionated- Irradiation Therapies , 2011 .
[26] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[27] Monique Noirhomme-Fraiture,et al. Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..
[28] Robert K. Leik,et al. A Measure of Ordinal Consensus , 1966 .
[29] Suzanne Winsberg,et al. Multidimensional Scaling of Histogram Dissimilarities , 2006, Data Science and Classification.
[30] Paula Brito. Symbolic objects: order structure and pyramidal clustering , 1995, Ann. Oper. Res..
[31] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[32] Mohamed A. Ismail,et al. Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..
[33] Antonio Ciampi,et al. Classification and Discrimination: the RECPAM Approach , 1994 .
[34] Philippe Nivlet,et al. Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.
[35] Francisco de A. T. de Carvalho,et al. Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..
[36] Edwin Diday,et al. In-service inspection of reinforced concrete cooling towers – EDF's feedback , 2012 .
[37] Francisco de A. T. de Carvalho,et al. Forecasting models for interval-valued time series , 2008, Neurocomputing.
[38] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[39] Monique Noirhomme-Fraiture,et al. Symbolic Data Analysis and the SODAS Software , 2008 .
[40] L. Billard,et al. SYMBOLIC PRINCIPAL COMPONENTS FOR INTERVAL-VALUED OBSERVATIONS , 2009 .
[41] G. N. Lance,et al. Note on a New Information-Statistic Classificatory Program , 1968, Comput. J..
[42] Francisco de A. T. de Carvalho,et al. Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..
[43] A. Timmermann. Forecast Combinations , 2005 .
[44] Ana Colubi,et al. Interval arithmetic-based simple linear regression between interval data: Discussion and sensitivity analysis on the choice of the metric , 2012, Inf. Sci..
[45] Jonathan L. Herlocker,et al. Evaluating collaborative filtering recommender systems , 2004, TOIS.
[46] Seppo Laaksonen. The Survey as a Basis for Symbolic Data Analysis , 2010 .
[47] Edwin Diday,et al. A Recent Advance in Data Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts , 1981 .
[48] Francisco de A. T. de Carvalho,et al. Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..
[49] Hans-Hermann Bock,et al. Analysis of Symbolic Data , 2000 .
[50] C. Holt. Author's retrospective on ‘Forecasting seasonals and trends by exponentially weighted moving averages’ , 2004 .
[51] Andre Luis Santiago Maia,et al. Holt’s exponential smoothing and neural network models for forecasting interval-valued time series , 2011 .
[52] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[53] Javier Montero,et al. Consensus Measures for Symbolic Data. , 2010 .
[54] L. Billard,et al. From the Statistics of Data to the Statistics of Knowledge , 2003 .
[55] Daniel Wegmann,et al. Bayesian Computation and Model Selection Without Likelihoods , 2010, Genetics.
[56] Renata M. C. R. de Souza,et al. Logistic regression-based pattern classifiers for symbolic interval data , 2011, Pattern Analysis and Applications.
[57] Yves Lechevallier,et al. Clustering constrained symbolic data , 2009, Pattern Recognit. Lett..
[58] Francisco de A. T. de Carvalho,et al. Applying Constrained Linear Regression Models to Predict Interval-Valued Data , 2005, KI.
[59] Mark P. Taylor,et al. Why is it so Difficult to Beat the Random Walk Forecast of Exchange Rates? , 2001 .
[60] Hisao Ishibuchi,et al. DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .
[61] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[62] Carlos Maté,et al. A Multivariate Analysis Approach to Forecasts Combination. Application to Foreign Exchange (FX) Markets , 2011 .
[63] J. M. Bates,et al. The Combination of Forecasts , 1969 .
[64] Paula Brito,et al. Linear discriminant analysis for interval data , 2006, Comput. Stat..
[65] M. King,et al. The $4 Trillion Question: What Explains FX Growth Since the 2007 Survey? , 2010 .
[66] Manabu Ichino,et al. Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..
[67] Miin-Shen Yang,et al. Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..
[68] Yoshikazu Terada,et al. Multidimensional Scaling with Hyperbox Model for Percentile Dissimilarities , 2011 .
[69] Edwin Diday,et al. Adaptation of interval PCA to symbolic histogram variables , 2012, Adv. Data Anal. Classif..
[70] Javier Arroyo,et al. Different Approaches to Forecast Interval Time Series: A Comparison in Finance , 2011 .
[71] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[72] Byron L. D. Bezerra,et al. A symbolic approach for content-based information filtering , 2004, Inf. Process. Lett..
[73] P. Sneath,et al. Numerical Taxonomy , 1962, Nature.
[74] Edwin Diday,et al. Generalization of the Principal Components Analysis to Histogram Data , 2000 .
[75] Nilss Olekalns,et al. Exchange Rate Instability: A Threshold Autoregressive Approach , 2001 .
[76] Kenneth Y. Goldberg,et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.
[77] André Hardy,et al. Clustering and Validation of Interval Data , 2007 .
[78] Inderjit S. Dhillon,et al. A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification , 2003, J. Mach. Learn. Res..
[79] Mark J. Wierman,et al. RANKING ORDINAL SCALES USING THE CONSENSUS MEASURE , 2005 .
[80] P. Brito,et al. Modelling interval data with Normal and Skew-Normal distributions , 2012 .
[81] G. McLachlan,et al. The EM Algorithm and Extensions: Second Edition , 2008 .
[82] Alan Agresti,et al. Categorical Data Analysis , 2003 .
[83] Marie Chavent,et al. A monothetic clustering method , 1998, Pattern Recognit. Lett..
[84] Thierry Denoeux,et al. Multidimensional scaling of fuzzy dissimilarity data , 2002, Fuzzy Sets Syst..
[85] Yves Lechevallier,et al. New clustering methods for interval data , 2006, Comput. Stat..
[86] Guoqiang Peter Zhang,et al. Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.
[87] Francisco de A. T. de Carvalho,et al. A New Method to Fit a Linear Regression Model for Interval-Valued Data , 2004, KI.
[88] Konstantinos G. Margaritis,et al. A Recommender System using Principal Component Analysis , 2007 .
[89] R. Onimaru,et al. A mathematical study to select fractionation regimen based on physical dose distribution and the linear-quadratic model. , 2012, International journal of radiation oncology, biology, physics.
[90] R. Clemen. Combining forecasts: A review and annotated bibliography , 1989 .
[91] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[92] Chenyi Hu,et al. Impacts of Interval Computing on Stock Market Variability Forecasting , 2008 .
[93] Francisco de A. T. de Carvalho,et al. Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features , 2004, Australian Conference on Artificial Intelligence.
[94] Paula Brito. Symbolic Clustering Of Probabilistic Data , 1998 .
[95] Kin Keung Lai,et al. Interval Time Series Analysis with an Application to the Sterling-Dollar Exchange Rate , 2008, J. Syst. Sci. Complex..
[96] Yousef Saad,et al. Farthest Centroids Divisive Clustering , 2008, 2008 Seventh International Conference on Machine Learning and Applications.
[97] Yves Lechevallier,et al. DIVCLUS-T: A monothetic divisive hierarchical clustering method , 2007, Comput. Stat. Data Anal..