Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures.

There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.

[1]  M. Hannigan,et al.  Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver , 2014 .

[2]  A. Goldstein,et al.  In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds , 2010, Proceedings of the National Academy of Sciences.

[3]  A. Laskin,et al.  Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids , 2012 .

[4]  A L Robinson,et al.  Coupled partitioning, dilution, and chemical aging of semivolatile organics. , 2006, Environmental science & technology.

[5]  D. Dockery,et al.  Health Effects of Fine Particulate Air Pollution: Lines that Connect , 2006, Journal of the Air & Waste Management Association.

[6]  A. M. Booth,et al.  New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coeffi , 2011 .

[7]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[8]  B. Finlayson‐Pitts,et al.  Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry. , 2012, The journal of physical chemistry. A.

[9]  Deresh Ramjugernath,et al.  Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions , 2004 .

[10]  A. Ravishankara,et al.  Determination of evaporation rates and vapor pressures of very low volatility compounds: a study of the C4-C10 and C12 dicarboxylic acids. , 2007, The journal of physical chemistry. A.

[11]  Markku Kulmala Condensational Growth and Evaporation in the Transition Regime , 1993 .

[12]  M. Davies,et al.  The lattice energies, infra-red spectra, and possible cyclization of some dicarboxylic acids , 1960 .

[13]  John H. Seinfeld,et al.  Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model - Part 2: Predictions of the vapour pressures of organic compounds , 2007 .

[14]  Mark H. Barley,et al.  Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water , 2008 .

[15]  P. Ziemann,et al.  A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer. , 2001, Analytical chemistry.

[16]  I. Riipinen,et al.  Effect of Inorganic Salts on the Volatility of Organic Acids , 2014, Environmental science & technology.

[17]  Bonyoung Koo,et al.  Integrated approaches to modeling the organic and inorganic atmospheric aerosol components , 2003 .

[18]  R. Hillamo,et al.  Substitution of chloride in sea-salt particles by inorganic and organic anions , 1998 .

[19]  L. Barrie,et al.  Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations , 1996 .

[20]  K. Lehtinen,et al.  The role of low volatile organics on secondary organic aerosol formation , 2013 .

[21]  Mark H. Barley,et al.  The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties – Part 1: A systematic evaluation of some available estimation techniques , 2010 .

[22]  Kurt Straif,et al.  The carcinogenicity of outdoor air pollution. , 2013, The Lancet. Oncology.

[23]  R. Kamens,et al.  A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter , 1997 .

[24]  W. Asher,et al.  SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds , 2007 .

[25]  N. Prisle,et al.  Humidity influence on gas‐particle phase partitioning of α‐pinene + O3 secondary organic aerosol , 2010 .

[26]  J. Mønster,et al.  Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols , 2003 .

[27]  T. Peter,et al.  Experimental evidence for excess entropy discontinuities in glass-forming solutions. , 2012, The Journal of chemical physics.

[28]  A. Presto,et al.  Investigation of α-Pinene + Ozone Secondary Organic Aerosol Formation at Low Total Aerosol Mass , 2006 .

[29]  K. Hilpert Potential of mass spectrometry for the analysis of inorganic high-temperature vapors , 2001, Analytical and Bioanalytical Chemistry.

[30]  A. Bertram,et al.  Liquid–liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts , 2014 .

[31]  A. Zardini,et al.  The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol , 2010 .

[32]  Majid Ezzati,et al.  Fine-particulate air pollution and life expectancy in the United States. , 2009, The New England journal of medicine.

[33]  C. Chan,et al.  The effects of organic species on the hygroscopic behaviors of inorganic aerosols. , 2002, Environmental science & technology.

[34]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[35]  James F. Pankow,et al.  An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol , 1994 .

[36]  Axel Metzger,et al.  Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene , 2008 .

[37]  A. Khlystov,et al.  Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: The integrated volume method , 2008 .

[38]  Barbara J. Turpin,et al.  Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility , 2000 .

[39]  Daniel J. Rader,et al.  Aerosol Wall Losses in Electrically Charged Chambers , 1985 .

[40]  J. Pankow An absorption model of GAS/Particle partitioning of organic compounds in the atmosphere , 1994 .

[41]  B. Finlayson‐Pitts,et al.  Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis. , 2010, Analytical chemistry.

[42]  R. Kamens,et al.  Some observations on times to equilibrium for semivolatile polycyclic aromatic hydrocarbons. , 1995, Environmental science & technology.

[43]  James F. Pankow,et al.  Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: aldehydes and ketones , 2004 .

[44]  E. Borrás,et al.  Determination of oxygenated compounds in secondary organic aerosol from isoprene and toluene smog chamber experiments , 2012 .

[45]  R. Bradley,et al.  347. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part II. α- and β-Anhydrous oxalic acid and tetragonal pentaerythritol , 1953 .

[46]  R. A. Cox,et al.  Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. II. Liquid-state vapor pressures of the acids. , 2010, The journal of physical chemistry. A.

[47]  Q. Ma,et al.  Laboratory study on the hygroscopic behavior of external and internal C2-C4 dicarboxylic acid-NaCl mixtures. , 2013, Environmental science & technology.

[48]  J. Müller,et al.  A group contribution method for estimating the vapour pressures of α-pinene oxidation products , 2005 .

[49]  Steven Compernolle,et al.  EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions , 2011 .

[50]  R. Kamens,et al.  Modeling the mass transfer of semivolatile organics in combustion aerosols. , 1994, Environmental science & technology.

[51]  A. Zardini,et al.  White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles. , 2006, Optics express.

[52]  P. Mcmurry,et al.  Gas and aerosol wall losses in Teflon film smog chambers. , 1985, Environmental science & technology.

[53]  M. Temprado,et al.  Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16 , 2005 .

[54]  J. Pierce,et al.  Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements , 2008 .

[55]  U. Krieger,et al.  Two-dimensional angular light-scattering in aqueous NaCl single aerosol particles during deliquescence and efflorescence. , 2001, Optics express.

[56]  Beiping Luo,et al.  A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients , 2008 .

[57]  D. Bougeard,et al.  α- And β Pahases of oxalic acid, H2C2O4: Vibrational spectra, normal-coordinate calculations, and intermolecular forces , 1982 .

[58]  D. Topping,et al.  Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic-organic aerosol particles. , 2013, Faraday discussions.

[59]  I. Riipinen,et al.  Evaporation of ternary inorganic/organic aqueous droplets: Sodium chloride, succinic acid and water , 2010 .

[60]  E. Davis,et al.  Submicron droplet evaporation in the continuum and non-continuum regimes , 1978 .

[61]  E. Davis,et al.  Single aerosol particle size and mass measurements using an electrodynamic balance , 1980 .

[62]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[63]  A. Klamt,et al.  Prediction, fine tuning, and temperature extrapolation of a vapor liquid equilibrium using COSMOtherm , 2007 .

[64]  S. Kreidenweis,et al.  Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities. , 2008, Environmental science & technology.

[65]  J. Seinfeld,et al.  Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation , 2011 .

[66]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[67]  J. Seinfeld,et al.  Gas/Particle Partitioning and Secondary Organic Aerosol Yields , 1996 .

[68]  Bernard Aumont,et al.  Assessment of vapor pressure estimation methods for secondary organic aerosol modeling , 2006 .

[69]  G R Cass,et al.  Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. , 2001, Environmental science & technology.

[70]  T. Matsuo,et al.  Thermodynamic properties of phase transitions in malonic acid and its deuterated analogue , 1991 .

[71]  Matthew P. Fraser,et al.  Gas-Phase and Particle-Phase Organic Compounds Emitted from Motor Vehicle Traffic in a Los Angeles Roadway Tunnel , 1998 .

[72]  A. Ravishankara,et al.  Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components , 2008, Proceedings of the National Academy of Sciences.

[73]  A. Limbeck,et al.  Organic acids in continental background aerosols , 1999 .

[74]  U. Baltensperger,et al.  Identification of Polymers as Major Components of Atmospheric Organic Aerosols , 2004, Science.

[75]  P. Ziemann,et al.  Kinetics, products, and mechanisms of secondary organic aerosol formation. , 2012, Chemical Society reviews.

[76]  John H Seinfeld,et al.  Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria. , 2006, The journal of physical chemistry. A.

[77]  T. Hoffmann,et al.  Thermodynamic properties and cloud droplet activation of a series of oxo-acids , 2010 .

[78]  J. Jimenez,et al.  Quantitative Estimates of the Volatility of Oa Quantitative Estimates of the Volatility of Ambient Organic Aerosol Acpd Quantitative Estimates of the Volatility of Oa Acpd Quantitative Estimates of the Volatility of Oa , 2022 .

[79]  R. Flagan,et al.  Determination of Particle Vapor Pressures Using the Tandem Differential Mobility Analyzer , 1993 .

[80]  S. M. Aschmann,et al.  Alkyl Nitrate, Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NOx−Air Photooxidations of C5−C8 n-Alkanes , 2001 .

[81]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[82]  A. M. Booth,et al.  Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids , 2010 .

[83]  Jonathan P. Reid,et al.  Comparison of Approaches for Measuring the Mass Accommodation Coefficient for the Condensation of Water and Sensitivities to Uncertainties in Thermophysical Properties , 2012, The journal of physical chemistry. A.

[84]  Michael E. Jenkin,et al.  Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3 , 2004 .

[85]  John H Seinfeld,et al.  Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 1. The acids as nondissociating components. , 2006, The journal of physical chemistry. A.

[86]  G. Mcfiggans,et al.  The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol , 2009 .

[87]  James F. Pankow,et al.  Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—2. Dialdehydes, methylglyoxal, and diketones , 2005 .

[88]  K. Kawamura,et al.  Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere , 2005 .

[89]  N. Donahue,et al.  Oligomer formation within secondary organic aerosols: equilibrium and dynamic considerations , 2013 .

[90]  A. Shihadeh,et al.  On transport phenomena and equilibration time scales in thermodenuders , 2010 .

[91]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[92]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[93]  A. Robinson,et al.  Modeling semivolatile organic aerosol mass emissions from combustion systems. , 2006, Environmental science & technology.

[94]  R. Kamens,et al.  A Thermodynamic Approach for Modeling Partitioning of Semivolatile Organic Compounds on Atmospheric Particulate Matter: Humidity Effects , 1998 .

[95]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[96]  James F. Pankow,et al.  Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids , 2006 .

[97]  T. Vesala,et al.  Models for condensational growth and evaporation of binary aerosol particles , 1997 .

[98]  P. Ziemann,et al.  Vapor Pressures of Substituted and Unsubstituted Monocarboxylic and Dicarboxylic Acids Measured Using an Improved Thermal Desorption Particle Beam Mass Spectrometry Method , 2005 .

[99]  I. Riipinen,et al.  Adipic and malonic acid aqueous solutions: surface tensions and saturation vapor pressures. , 2007, The journal of physical chemistry. A.

[100]  C. Chan,et al.  Continuous Measurements of the Water Activities of Aqueous Droplets of Water-Soluble Organic Compounds , 2002 .

[101]  C. G. D. Kruif,et al.  Vapor pressures and lattice energies of oxalic acid, mesotartaric acid, phloroglucinol, myoinositol, and their hydrates , 1983 .

[102]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[103]  A. Goldstein,et al.  Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds. , 2013, Environmental science & technology.

[104]  I. Riipinen,et al.  Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets , 2013, Environmental science & technology.

[105]  J. Watson Visibility: Science and Regulation , 2002, Journal of the Air & Waste Management Association.

[106]  Jonathan P. Reid,et al.  Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. , 2008, Chemical Society reviews.

[107]  D. Topping,et al.  Interactive comment on “The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties: part 2; determination of particle hygroscopicity and its dependence on “apparent” volatility” by D. O. Topping et al , 2011 .

[108]  Parameterization of thermal properties of aging secondary organic aerosol produced by photo-oxidation of selected terpene mixtures. , 2014, Environmental science & technology.

[109]  Simon O'Meara,et al.  An assessment of vapour pressure estimation methods. , 2014, Physical chemistry chemical physics : PCCP.

[110]  J. Mønster,et al.  Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures , 2004 .

[111]  Martin Mohr,et al.  Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications , 2001 .

[112]  W. Noyes,et al.  THE VAPOR PRESSURE OF ANHYDROUS OXALIC ACID , 1926 .

[113]  Takashi Nakamura,et al.  Prediction of vapour pressures of chlorobenzenes and selected polychlorinated biphenyls using the COSMO-RS model , 2009 .

[114]  U. Pöschl,et al.  Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations , 2009 .

[115]  K. Kawamura,et al.  Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air , 1987 .

[116]  J. Schauer,et al.  Insights into the nature of secondary organic aerosol in Mexico City during the MILAGRO experiment 2006 , 2010 .

[117]  Bernard Aumont,et al.  Modelling the Evolution of Organic Carbon Modelling the Evolution of Organic Carbon during Its Gas-phase Tropospheric Oxidation: Development of an Explicit Model Based on a Self Generating Approach Acpd Modelling the Evolution of Organic Carbon , 2022 .

[118]  Kenneth S. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes. [Erratum to document cited in CA117(22):221099a] , 1994 .

[119]  Deresh Ramjugernath,et al.  Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions , 2008 .

[120]  B. Brunekreef,et al.  Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). , 2013, The Lancet. Oncology.

[121]  A. M. Booth,et al.  Connecting bulk viscosity measurements to kinetic limitations on attaining equilibrium for a model aerosol composition. , 2014, Environmental science & technology.

[122]  H. Kjaergaard,et al.  The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. , 2014, Journal of the American Chemical Society.

[123]  Allen L Robinson,et al.  Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. , 2006, Environmental science & technology.

[124]  A. Robinson,et al.  A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution , 2011 .

[125]  Stephen E. Stein,et al.  Estimation of normal boiling points from group contributions , 1994, J. Chem. Inf. Comput. Sci..

[126]  H. Kjaergaard,et al.  Autoxidation of Organic Compounds in the Atmosphere , 2013 .

[127]  V. R. Thalladi,et al.  The Melting Point Alternation in α,ω-Alkanedicarboxylic Acids† , 2000 .

[128]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[129]  M. R. D. Silva,et al.  Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids , 1999 .

[130]  Vapor-wall deposition in chambers: theoretical considerations. , 2014, Environmental science & technology.

[131]  L. Chang,et al.  Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT‐3/COSMIC observations , 2013 .

[132]  K. Hilpert High temperature mass spectrometry in materials research , 1991 .

[133]  E. Davis,et al.  The double‐ring electrodynamic balance for microparticle characterization , 1990 .

[134]  G. Pariyo,et al.  Violence against health workers during armed conflict , 2013, The Lancet.

[135]  D. Rader,et al.  Evaporation rates of monodisperse organic aerosols in the 0.02- to 0.2-μm-diameter range , 1987 .

[136]  I. Riipinen,et al.  Interactive comment on “ Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events ” by J , 2011 .

[137]  Glen R. Cass,et al.  Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography , 1997 .

[138]  A. Zelenyuk,et al.  Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation , 2010, Proceedings of the National Academy of Sciences.

[139]  I. Riipinen,et al.  Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber , 2011 .

[140]  I. Riipinen,et al.  Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics , 2010 .

[141]  John H. Seinfeld,et al.  Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere , 2008 .

[142]  A. Ravishankara,et al.  Evaporation rates and vapor pressures of the even-numbered C8-C18 monocarboxylic acids. , 2008, The journal of physical chemistry. A.

[143]  A new approach to determine vapour pressures and hygroscopicities of aqueous aerosols containing semi-volatile organic compounds. , 2014, Physical chemistry chemical physics : PCCP.

[144]  Allen L. Robinson,et al.  Is the gas‐particle partitioning in alpha‐pinene secondary organic aerosol reversible? , 2007 .

[145]  A. Hoffer,et al.  Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols : implications for photochemical production and degradation in smoke layers , 2009 .

[146]  Hanna Vehkamäki,et al.  Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. , 2012, Chemical Society reviews.

[147]  E. Davis Transport Phenomena with Single Aerosol Particles , 1982 .

[148]  Glen R. Cass,et al.  Organic molecular tracers for particulate air pollution sources , 1998 .

[149]  S. Pandis,et al.  Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol , 2007 .

[150]  James F. Pankow,et al.  Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle paritioning and vapor pressure—I. theory and analysis of available data , 1992 .

[151]  Samuel H. Yalkowsky,et al.  Estimating Pure Component Vapor Pressures of Complex Organic Molecules , 1997 .

[152]  M. Kulmala,et al.  Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures , 1990 .

[153]  A. Zardini,et al.  Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing. , 2010, Optics express.

[154]  Xuan Zhang,et al.  Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol , 2014, Proceedings of the National Academy of Sciences.

[155]  A. Khlystov,et al.  Effect of Aerosol Generation Method on Measured Saturation Pressure and Enthalpy of Vaporization for Dicarboxylic Acid Aerosols , 2010 .

[156]  Allen L Robinson,et al.  Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. , 2009, Environmental science & technology.

[157]  M. Hallquist,et al.  Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene , 2010 .

[158]  Maria Cristina Facchini,et al.  Characterization of water‐soluble organic compounds in atmospheric aerosol: A new approach , 2000 .

[159]  G. Scoles,et al.  Infrared Spectroscopy in Highly Quantum Matrixes: Vibrational Spectrum of (SF6)n=1,2 Attached to Helium Clusters [Erratum to document cited in CA118:134971] , 1995 .

[160]  Allen L. Robinson,et al.  A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics , 2010 .

[161]  Charles E. Kolb,et al.  An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds , 2010 .

[162]  J. Thornton,et al.  Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS , 2013 .

[163]  R. Derwent,et al.  Atmospheric Chemistry and Physics Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds , 2022 .

[164]  J. Pankow,et al.  Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments , 1993 .

[165]  D. Rader,et al.  Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation , 1986 .

[166]  Claudia Marcolli,et al.  Exploring the complexity of aerosol particle properties and processes using single particle techniques. , 2012, Chemical Society reviews.

[167]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds , 2005 .

[168]  M. Hallquist,et al.  A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO) , 2013 .

[169]  P. Saxena,et al.  Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds , 1996 .

[170]  P. Mcmurry,et al.  Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids , 1989 .

[171]  P. Ziemann,et al.  Evidence for Low-Volatility Diacyl Peroxides as a Nucleating Agent and Major Component of Aerosol Formed from Reactions of O3 with Cyclohexene and Homologous Compounds , 2002 .

[172]  R Anthony Cox,et al.  Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. I. Hygroscopic growth. , 2010, The journal of physical chemistry. A.

[173]  A. Khlystov,et al.  Determination of evaporation coefficients of semi-volatile organic aerosols using an integrated volume—tandem differential mobility analysis (IV-TDMA) method , 2009 .

[174]  V. Lapshin,et al.  Vapor pressure over a charged drop , 2002 .

[175]  A. Khlystov,et al.  Determination of Activity Coefficients of Semi-Volatile Organic Aerosols Using the Integrated Volume Method , 2009 .

[176]  J. Pankow,et al.  Variation in the sensitivity of predicted levels of atmospheric organic particulate matter (OPM). , 2008, Environmental science & technology.

[177]  Pietro Traldi,et al.  Rapid Commun. Mass Spectrom.10. 1629-1637 (1996) Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry in Milk Science , 1997 .

[178]  V. E. Malpass,et al.  212. Heats of sublimation of straight-chain monocarboxylic acids , 1961 .

[179]  J. Prausnitz,et al.  Vapor pressures of high-molecular-weight hydrocarbons , 1979 .

[180]  M. Greenstone,et al.  Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy , 2013, Proceedings of the National Academy of Sciences.

[181]  J. Seinfeld,et al.  A practical method for the calculation of liquid–liquid equilibria in multicomponent organic–water–electrolyte systems using physicochemical constraints , 2013 .

[182]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[183]  K. T. Whitby,et al.  The aerosol mobility chromatograph: A new detector for sulfuric acid aerosols , 1978 .

[184]  D. Blake,et al.  Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006 , 2009 .

[185]  C. Cappa Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior , 2010 .

[186]  Harald Saathoff,et al.  Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α -pinene and limonene , 2008 .

[187]  C. Chan,et al.  The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. , 2001, Environmental science & technology.

[188]  I. Riipinen,et al.  Thermodynamic properties of malonic, succinic, and glutaric acids: evaporation rates and saturation vapor pressures. , 2007, Environmental science & technology.

[189]  Birgitta Svenningsson,et al.  A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid , 2006 .

[190]  R. Kamens,et al.  Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. , 2001, Environmental science & technology.

[191]  A. Goldstein,et al.  Known and Unexplored Organic Constituents in the Earth's Atmosphere , 2007 .

[192]  Harald Saathoff,et al.  Volatility of secondary organic aerosols from the ozone initiated oxidation of α-pinene and limonene , 2007 .

[193]  A. Bertram,et al.  Liquid–liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride , 2013 .

[194]  S. Martin,et al.  Particle-phase chemistry of secondary organic material: modeled compared to measured O:C and H:C elemental ratios provide constraints. , 2011, Environmental science & technology.

[195]  S. H. Chen,et al.  Light scattering from water droplets in the geometrical optics approximation. , 1981, Applied optics.

[196]  M. Facchini,et al.  Water‐soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC‐MS , 2002 .

[197]  K. Kawamura,et al.  Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics , 1999 .

[198]  P. Monks,et al.  Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis , 2009 .

[199]  Hendrik Fuchs,et al.  Volatility of secondary organic aerosol during OH radical induced ageing , 2011 .

[200]  A. Goldstein,et al.  Gas/particle partitioning of total alkyl nitrates observed with TD‐LIF in Bakersfield , 2013 .

[201]  Jonathan P. Reid,et al.  Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap , 2004 .

[202]  R. Kamens,et al.  Gas–particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance , 2003 .

[203]  A modeling approach to evaluate the uncertainty in estimating the evaporation behaviour and volatility of organic aerosols , 2011 .

[204]  I. Riipinen,et al.  Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations , 2011 .

[205]  A. M. Booth,et al.  Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and Differential Scanning Calorimetry , 2010 .

[206]  M. Hallquist,et al.  Aerosol volatility and enthalpy of sublimation of carboxylic acids. , 2010, The journal of physical chemistry. A.

[207]  Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. , 2011, Nature chemistry.

[208]  M. Hannigan,et al.  Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver. , 2014, Environmental science & technology.

[209]  M. Mochida,et al.  Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific , 2003 .

[210]  M. R. D. Silva,et al.  The construction, testing and use of a new knudsen effusion apparatus , 1990 .

[211]  Roger G. Stone,et al.  Intergovernmental Panel on Climate Change Fifth Assessment Report , 2010 .

[212]  I. Riipinen,et al.  Theoretical constraints on pure vapor‐pressure driven condensation of organics to ultrafine particles , 2011 .

[213]  A. Matsunaga,et al.  Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements , 2010 .

[214]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[215]  J. Thornton,et al.  Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS) , 2010 .

[216]  U. Pöschl,et al.  Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter , 2010 .

[217]  J. Calvert,et al.  Glossary of atmospheric chemistry terms (Recommendations 1990) , 1990 .

[218]  R. Kamens,et al.  Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions , 2002, Science.

[219]  E. Davis,et al.  Determination of diffusion coefficients by submicron droplet evaporation , 1977 .

[220]  D. Ramjugernath,et al.  Estimation of the vapour pressure of non-electrolyte organic compounds via group contributions and group interactions , 2008 .

[221]  J. Seinfeld,et al.  Aerosol Formation in the Cyclohexene-Ozone System , 2000 .

[222]  John H. Seinfeld,et al.  Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape , 1981 .

[223]  I. Riipinen,et al.  Near-Unity Mass Accommodation Coefficient of Organic Molecules of Varying Structure , 2014, Environmental science & technology.

[224]  Thomas Peter,et al.  Mixing of the Organic Aerosol Fractions: Liquids as the Thermodynamically Stable Phases , 2004 .

[225]  T. Peter,et al.  Vapor pressures of substituted polycarboxylic acids are much lower than previously reported , 2013 .

[226]  Mark H. Barley,et al.  The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties - Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation , 2011 .

[227]  Jonathan P. Reid,et al.  Optical control and characterisation of aerosol , 2009 .

[228]  L. Barrie,et al.  Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic , 2007 .

[229]  A. Robinson,et al.  Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. , 2013, Environmental science & technology.

[230]  Spyros N. Pandis,et al.  Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of α- and β-Pinene , 2001 .

[231]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[232]  A. Faustini,et al.  Impact of Fine and Ultrafine Particles on Emergency Hospital Admissions for Cardiac and Respiratory Diseases , 2010, Epidemiology.

[233]  M. R. D. Silva,et al.  Thermodynamic study on the sublimation of succinic acid and of methyl- and dimethyl-substituted succinic and glutaric acids , 2001 .

[234]  J. Reid,et al.  Accurate and efficient determination of the radius, refractive index, and dispersion of weakly absorbing spherical particle using whispering gallery modes , 2013 .

[235]  D. Grosjean,et al.  Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter , 1978 .