Relation algebras and their application in qualitative spatial reasoning

[1]  Robin Hirsch,et al.  Relation Algebras of Intervals , 1996, Artif. Intell..

[2]  István Németi,et al.  Algebraization of quantifier logics, an introductory overview , 1991, Stud Logica.

[3]  Bjarni Jónsson,et al.  Representation of modular lattices and of relation algebras , 1959 .

[4]  Vaughan R. Pratt,et al.  Dynamic algebras: Examples, constructions, applications , 1991, Stud Logica.

[5]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[6]  Brandon Bennett Some Observations and Puzzles about Composing Spatial and Temporal Relations , 1994 .

[7]  Sanjiang Li,et al.  Extensionality of the RCC8 Composition Table , 2002, Fundam. Informaticae.

[8]  E. A. Milne,et al.  Transactions of the Cambridge Philosophical Society , 1893 .

[9]  B. Bennett,et al.  When does a Composition Table Provide a Complete and TractableProof Procedure for a Relational Constraint Language ? , 1997 .

[10]  Ivo Düntsch,et al.  Relations Algebras in Qualitative Spatial Reasoning , 1999, Fundam. Informaticae.

[11]  Ralf Behnke,et al.  RELVIEW - A System for Calculating With Relations and Relational Programming , 1998, FASE.

[12]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[13]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[14]  R. Lyndon THE REPRESENTATION OF RELATIONAL ALGEBRAS , 1950 .

[15]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[16]  Michael Winter,et al.  Construction of Boolean contact algebras , 2004, AI Commun..

[17]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[18]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[19]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[20]  A. Tarski Contributions to the theory of models. III , 1954 .

[21]  Bernhard Nebel,et al.  Computational Properties of Qualitative Spatial Reasoning: First Results , 1995, KI.

[22]  William Kneale ON THE SYLLOGISM AND OTHER LOGICAL WRITINGS , 1966 .

[23]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[24]  I. Németi,et al.  Decidability of relation algebras with weakened associativity , 1987 .

[25]  Gunther Schmidt,et al.  A Necessary Relation Algebra for Mereotopology , 2001, Stud Logica.

[26]  Robin Hirsch,et al.  A Finite Relation Algebra with Undecidable Network Satisfaction Problem , 1999, Log. J. IGPL.

[27]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[28]  Terence R. Smith,et al.  Algebraic approach to spatial reasoning , 1992, Int. J. Geogr. Inf. Sci..

[29]  Robin Hirsch,et al.  Tractable approximations for temporal constraint handling , 2000, Artif. Intell..

[30]  C. Siegel Vorlesungen über die Algebra der Logik , 1907 .

[31]  Max J. Egenhofer,et al.  Deriving the Composition of Binary Topological Relations , 1994, J. Vis. Lang. Comput..

[32]  R. McKenzie Representations of integral relation algebras. , 1970 .

[33]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[34]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[35]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[36]  T. D. Laguna Point, Line, and Surface, as Sets of Solids , 1922 .

[37]  Ivo Düntsch,et al.  Binary Relations and Permutation Groups , 1995, Math. Log. Q..

[38]  Roger D. Maddux,et al.  Representations for Small Relation Algebras , 1994, Notre Dame J. Formal Log..

[39]  Ivo Düntsch Small integral relation algebras generated by a partial order , 1991 .

[40]  Alexander Reinefeld,et al.  Fast algebraic methods for interval constraint problems , 1997, Annals of Mathematics and Artificial Intelligence.

[41]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[42]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[43]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[44]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[45]  Hajnal Andréka,et al.  Decision problems for equational theories of relation algebras , 1997, Memoirs of the American Mathematical Society.

[46]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[47]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[48]  D. Monk On representable relation algebras. , 1964 .

[49]  B. Jónsson Varieties of relation algebras , 1982 .

[50]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[51]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[52]  Vaughan R. Pratt,et al.  On the Syllogism: IV; and on the Logic of Relations , 2022 .

[53]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[54]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[55]  Alfred Tarski,et al.  Distributive and Modular Laws in the Arithmetic of Relation Algebras , 1953 .

[56]  M. Egenhofer,et al.  Assessing the Consistency of Complete and Incomplete Topological Information , 1993 .

[57]  Alexander Reinefeld,et al.  Effective Solution of Qualitative Interval Constraint Problems , 1992, Artif. Intell..

[58]  Mingsheng Ying,et al.  Relational reasoning in the region connection calculus , 2005, ArXiv.

[59]  R. C. Lyndon Relation algebras and projective geometries. , 1961 .

[60]  R. Maddux Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interc , 1990 .

[62]  A. Tarski,et al.  Cylindric Algebras. Part II , 1988 .

[63]  Peter B. Ladkin,et al.  On binary constraint networks , 1989 .

[64]  Sanjiang Li,et al.  Region Connection Calculus: Its models and composition table , 2003, Artif. Intell..

[65]  Roger D. Maddux,et al.  Relation Algebras for Reasoning about Time and Space , 1993, AMAST.

[66]  R. Maddux Some varieties containing relation algebras , 1982 .