The oriented swap process and last passage percolation

We present new probabilistic and combinatorial identities relating three random processes: the oriented swap process on $n$ particles, the corner growth process, and the last passage percolation model. We prove one of the probabilistic identities, relating a random vector of last passage percolation times to its dual, using the duality between the Robinson-Schensted-Knuth and Burge correspondences. A second probabilistic identity, relating those two vectors to a vector of "last swap times" in the oriented swap process, is conjectural. We give a computer-assisted proof of this identity for $n\le 6$ after first reformulating it as a purely combinatorial identity, and discuss its relation to the Edelman-Greene correspondence. The conjectural identity provides precise finite-$n$ and asymptotic predictions on the distribution of the absorbing time of the oriented swap process, thus conditionally solving an open problem posed by Angel, Holroyd and Romik.

[1]  R. Carter REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .

[2]  Combinatorial aspects of the Lascoux–Schützenberger tree , 2003 .

[3]  Curtis Greene,et al.  An Extension of Schensted's Theorem , 1974 .

[4]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[5]  Zachary Hamaker,et al.  Relating Edelman–Greene insertion to the Little map , 2012, 1210.7119.

[6]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[7]  Paul H. Edelman,et al.  Balanced tableaux , 1987 .

[8]  The Archimedean limit of random sorting networks , 2018, 1802.08934.

[9]  D. Romik,et al.  Absorbing time asymptotics in the oriented swap process , 2020, The Annals of Applied Probability.

[10]  The local limit of random sorting networks , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[11]  Eric M. Rains,et al.  Algebraic aspects of increasing subsequences , 1999 .

[12]  William H. Burge,et al.  Four Correspondences Between Graphs and Generalized Young Tableaux , 1974, J. Comb. Theory A.

[13]  RICHARD P. STANLEY,et al.  On the Number of Reduced Decompositions of Elements of Coxeter Groups , 1984, Eur. J. Comb..

[14]  Circular support in random sorting networks , 2018, 1802.08933.

[15]  A. Holroyd,et al.  The oriented swap process. , 2008, 0806.2222.

[16]  P. Forrester Log-Gases and Random Matrices , 2010 .

[17]  Neil O'Connell,et al.  The geometric Burge correspondence and the partition function of polymer replicas , 2020, Selecta Mathematica.

[18]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[19]  B. Virág,et al.  Random sorting networks , 2006, math/0609538.

[20]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[21]  Christian Krattenthaler Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes , 2006, Adv. Appl. Math..

[22]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[23]  21pYO-3 Spatial correlations of the 1D KPZ surface on a flat substrate , 2005, cond-mat/0504417.

[24]  Duncan Dauvergne Hidden invariance of last passage percolation and directed polymers , 2020, The Annals of Probability.

[25]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[26]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[27]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[28]  J. Warren,et al.  Point-to-line last passage percolation and the invariant measure of a system of reflecting Brownian motions , 2019, Probability Theory and Related Fields.

[29]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[30]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[31]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[32]  Arun Ram,et al.  Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .

[33]  D. Romik,et al.  Sorting networks, staircase Young tableaux and last passage percolation , 2020, 2003.03331.

[34]  Fluctuation Properties of the TASEP with Periodic Initial Configuration , 2006, math-ph/0608056.