The oriented swap process and last passage percolation
暂无分享,去创建一个
Dan Romik | Fabio Deelan Cunden | Elia Bisi | Shane Gibbons | D. Romik | F. D. Cunden | Shane Gibbons | E. Bisi
[1] R. Carter. REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .
[2] Combinatorial aspects of the Lascoux–Schützenberger tree , 2003 .
[3] Curtis Greene,et al. An Extension of Schensted's Theorem , 1974 .
[4] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[5] Zachary Hamaker,et al. Relating Edelman–Greene insertion to the Little map , 2012, 1210.7119.
[6] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[7] Paul H. Edelman,et al. Balanced tableaux , 1987 .
[8] The Archimedean limit of random sorting networks , 2018, 1802.08934.
[9] D. Romik,et al. Absorbing time asymptotics in the oriented swap process , 2020, The Annals of Applied Probability.
[10] The local limit of random sorting networks , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[11] Eric M. Rains,et al. Algebraic aspects of increasing subsequences , 1999 .
[12] William H. Burge,et al. Four Correspondences Between Graphs and Generalized Young Tableaux , 1974, J. Comb. Theory A.
[13] RICHARD P. STANLEY,et al. On the Number of Reduced Decompositions of Elements of Coxeter Groups , 1984, Eur. J. Comb..
[14] Circular support in random sorting networks , 2018, 1802.08933.
[15] A. Holroyd,et al. The oriented swap process. , 2008, 0806.2222.
[16] P. Forrester. Log-Gases and Random Matrices , 2010 .
[17] Neil O'Connell,et al. The geometric Burge correspondence and the partition function of polymer replicas , 2020, Selecta Mathematica.
[18] A. Björner,et al. Combinatorics of Coxeter Groups , 2005 .
[19] B. Virág,et al. Random sorting networks , 2006, math/0609538.
[20] J. Baik,et al. The asymptotics of monotone subsequences of involutions , 1999, math/9905084.
[21] Christian Krattenthaler. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes , 2006, Adv. Appl. Math..
[22] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[23] 21pYO-3 Spatial correlations of the 1D KPZ surface on a flat substrate , 2005, cond-mat/0504417.
[24] Duncan Dauvergne. Hidden invariance of last passage percolation and directed polymers , 2020, The Annals of Probability.
[25] P. Forrester. Log-Gases and Random Matrices (LMS-34) , 2010 .
[26] D. Romik. The Surprising Mathematics of Longest Increasing Subsequences , 2015 .
[27] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[28] J. Warren,et al. Point-to-line last passage percolation and the invariant measure of a system of reflecting Brownian motions , 2019, Probability Theory and Related Fields.
[29] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[30] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[31] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[32] Arun Ram,et al. Book Review: Young tableaux: With applications to representation theory and geometry , 1999 .
[33] D. Romik,et al. Sorting networks, staircase Young tableaux and last passage percolation , 2020, 2003.03331.
[34] Fluctuation Properties of the TASEP with Periodic Initial Configuration , 2006, math-ph/0608056.