Transfusion of apoptotic beta-cells induces immune tolerance to beta-cell antigens and prevents type 1 diabetes in NOD mice.

In vivo induction of beta-cell apoptosis has been demonstrated to be effective in preventing type 1 diabetes in NOD mice. Based on the notion that steady-state cell apoptosis is associated with self-tolerance and the need for developing a more practical approach using apoptotic beta-cells to prevent type 1 diabetes, the current study was designed to investigate apoptotic beta-cells induced ex vivo in preventing type 1 diabetes. The NIT-1 cell line serves as a source of beta-cells. Apoptotic NIT-1 cells were prepared by ultraviolet B (UVB) irradiation. Three weekly transfusions of UVB-irradiated NIT-1 cells (1 x 10(5)/mouse) or PBS were used to determine whether transfusions of UVB-irradiated NIT-1 cells induce immune tolerance to beta-cell antigens in vivo and prevent type 1 diabetes. The suppression of anti-beta-cell antibodies, polarization of T-helper (Th) cells, and induction of regulatory T-cells by UVB-irradiated NIT-1 cell treatment were investigated. The transfusions of apoptotic NIT-1 cells suppress anti-beta-cell antibody development and induce Th2 responses and interleukin-10-producing regulatory type 1 cells. Importantly, this treatment significantly delays and prevents the onset of diabetes when 10-week-old NOD mice are treated. Adoptive transfer of splenocytes from UVB-irradiated NIT-1 cell-treated mice prevents diabetes caused by simultaneously injected diabetogenic splenocytes in NOD-Rag(-/-) mice. Moreover, the proliferation of adoptively transferred carboxyfluorescein diacetate succinimidyl ester-labeled beta-cell antigen-specific T-cell receptor-transgenic T-cells in UVB-irradiated NIT-1-cell treated mice is markedly suppressed. The transfusion of apoptotic beta-cells effectively protects against type 1 diabetes in NOD mice by inducing immune tolerance to beta-cell antigens. This approach has great potential for immune intervention for human type 1 diabetes.