Contribution of sublinear and supralinear dendritic integration to neuronal computations

Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.

[1]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[2]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[3]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[4]  Anthony M. Zador,et al.  Nonlinear Pattern Separation in Single Hippocampal Neurons with Active Dendritic Membrane , 1991, NIPS.

[5]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[6]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[7]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[8]  Bert Sakmann,et al.  Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo , 2014, Proceedings of the National Academy of Sciences.

[9]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[10]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[11]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[13]  Bernardo L Sabatini,et al.  Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells , 2006, Nature Neuroscience.

[14]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[15]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[16]  Peter E. Nugent,et al.  Hua Hu Fast-Spiking Hippocampal Interneurons Dendritic Mechanisms Underlying Rapid Synaptic Activation , 2011 .

[17]  Bartlett W. Mel A Connectionist Model May Shed Light on Neural Mechanisms for Visually Guided Reaching , 1991, Journal of Cognitive Neuroscience.

[18]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[19]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[20]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[21]  Kaori Ikeda,et al.  Sublinear integration underlies binocular processing in primary visual cortex , 2013, Nature Neuroscience.

[22]  Dejan Zecevic,et al.  Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. , 2014, Cerebral cortex.

[23]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[24]  Valentina Emiliani,et al.  Three-dimensional holographic photostimulation of the dendritic arbor , 2011, Journal of neural engineering.

[25]  R. Yuste,et al.  Input Summation by Cultured Pyramidal Neurons Is Linear and Position-Independent , 1998, The Journal of Neuroscience.

[26]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[27]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[28]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[29]  Troy W. Margrie,et al.  Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells , 2011, Scientific reports.

[30]  Troy W. Margrie,et al.  Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons , 2014, Nature Reviews Neuroscience.

[31]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[32]  Christine Grienberger,et al.  Dendritic function in vivo , 2015, Trends in Neurosciences.

[33]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[34]  Valentina Emiliani,et al.  The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons , 2014, Front. Cell. Neurosci..

[35]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[36]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[37]  Roberto Malinow,et al.  Compartmentalized versus Global Synaptic Plasticity on Dendrites Controlled by Experience , 2011, Neuron.

[38]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[39]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[40]  Amanda J. Foust,et al.  The spatio‐temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study , 2011, The Journal of physiology.

[41]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[42]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[43]  Peter L. Hammer,et al.  Boolean Functions , 2013, Discrete Applied Mathematics.

[44]  Mark D. Humphries,et al.  Dendrites enhance both single neuron and network computation , 2014 .

[45]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[46]  Judit K. Makara,et al.  Variable Dendritic Integration in Hippocampal CA3 Pyramidal Neurons , 2013, Neuron.

[47]  Samouil L. Farhi,et al.  All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins , 2014, Nature Methods.

[48]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[49]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[50]  Masanori Murayama,et al.  Inhibitory Regulation of Dendritic Activity in vivo , 2012, Front. Neural Circuits.

[51]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[52]  Thomas A Nielsen,et al.  Desensitization Properties of AMPA Receptors at the Cerebellar Mossy Fiber–Granule Cell Synapse , 2007, The Journal of Neuroscience.

[53]  Judit K. Makara,et al.  Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons , 2009, Nature Neuroscience.

[54]  D. Jaffe,et al.  Passive normalization of synaptic integration influenced by dendritic architecture. , 1999, Journal of neurophysiology.

[55]  Christoph Lutz,et al.  Holographic photolysis of caged neurotransmitters , 2008, Nature Methods.

[56]  Bartlett W. Mel,et al.  Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It’s about Time , 2011, Front. Comput. Neurosci..

[57]  Michael Rudolph,et al.  A Fast-Conducting, Stochastic Integrative Mode for Neocortical Neurons InVivo , 2003, The Journal of Neuroscience.

[58]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[59]  Bartlett W. Mel,et al.  Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning , 1989, NIPS.

[60]  Bartlett W. Mel,et al.  Mechanisms underlying subunit independence in pyramidal neuron dendrites , 2013, Proceedings of the National Academy of Sciences.

[61]  J. Clements,et al.  Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. , 1989, The Journal of physiology.

[62]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[63]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[64]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[65]  Srdjan D Antic,et al.  Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. , 2009, Journal of neurophysiology.

[66]  Padraig Gleeson,et al.  Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model , 2014, PLoS Comput. Biol..

[67]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[68]  Roland Krueppel,et al.  Dendritic Integration in Hippocampal Dentate Granule Cells , 2011, Neuron.

[69]  N. Spruston,et al.  Dendritic arithmetic , 2004, Nature Neuroscience.

[70]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[71]  D. J. Harrison,et al.  Bright and fast multi-colored voltage reporters via electrochromic FRET , 2014, Nature Communications.

[72]  Peter Jonas,et al.  The Time Course of Signaling at Central Glutamatergic Synapses. , 2000, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[73]  A. R. Martin,et al.  A further study of the statistical composition of the end‐plate potential , 1955, The Journal of physiology.

[74]  G. Stuart,et al.  Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input , 2009, The Journal of Neuroscience.

[75]  J. Rinzel,et al.  The role of dendrites in auditory coincidence detection , 1998, Nature.

[76]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[77]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[78]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[79]  Boris S. Gutkin,et al.  Spiking and saturating dendrites differentially expand single neuron computation capacity , 2012, NIPS.

[80]  Boris S. Gutkin,et al.  Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions , 2013, PLoS Comput. Biol..

[81]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[82]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[83]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[84]  Wade G. Regehr,et al.  Local Interneurons Regulate Synaptic Strength by Retrograde Release of Endocannabinoids , 2006, The Journal of Neuroscience.

[85]  Michael Häusser,et al.  Dendritic Calcium Spikes Are Tunable Triggers of Cannabinoid Release and Short-Term Synaptic Plasticity in Cerebellar Purkinje Neurons , 2006, The Journal of Neuroscience.

[86]  Christoph Schmidt-Hieber,et al.  Subthreshold Dendritic Signal Processing and Coincidence Detection in Dentate Gyrus Granule Cells , 2007, The Journal of Neuroscience.

[87]  Multiplying two numbers together in your head is a difficult task if you did not learn multiplication tables as a child. On the face of it, this is somewhat surprising given the remarkable power of the brain to perform , 2010 .

[88]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Wolfgang Maass,et al.  Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons , 2011, The Journal of Neuroscience.

[90]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[91]  Rafael Yuste,et al.  RuBi-Glutamate: Two-Photon and Visible-Light Photoactivation of Neurons and Dendritic spines , 2009, Front. Neural Circuits.

[92]  R. Silver,et al.  Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope , 2014, Journal of Neuroscience Methods.

[93]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[94]  David A McCormick,et al.  Active Action Potential Propagation But Not Initiation in Thalamic Interneuron Dendrites , 2011, The Journal of Neuroscience.

[95]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[96]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[97]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[98]  Szabolcs Káli,et al.  Dendritic Spikes Induce Ripples in Parvalbumin Interneurons during Hippocampal Sharp Waves , 2014, Neuron.

[99]  Amanda J. Foust,et al.  Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons , 2010, The Journal of Neuroscience.

[100]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[101]  R. Silver,et al.  Gap Junctions Compensate for Sublinear Dendritic Integration in an Inhibitory Network , 2012, Science.

[102]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[103]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[104]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[105]  Boris S. Gutkin,et al.  The Role of Ongoing Dendritic Oscillations in Single-Neuron Dynamics , 2009, PLoS Comput. Biol..

[106]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[107]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[108]  Dejan Zecevic,et al.  Combining Voltage and Calcium Imaging from Neuronal Dendrites , 2008, Cellular and Molecular Neurobiology.

[109]  M. Larkum,et al.  NMDA spikes enhance action potential generation during sensory input , 2014, Nature Neuroscience.

[110]  L. Cathala,et al.  Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity , 2012, Neuron.

[111]  W Rall,et al.  Matching dendritic neuron models to experimental data. , 1992, Physiological reviews.