Dual-control based approach to batch process operation under uncertainty based on optimality-conditions parameterization

This paper presents a scheme for dual robust control of batch processes under parametric uncertainty. The dual-control paradigm arises in the context of adaptive control. A trade-off should be decided between the control actions that (robustly) optimize the plant performance and between those that excite the plant such that unknown plant model parameters can be learned precisely enough to increase the robust performance of the plant. Some recently proposed approaches can be used to tackle this problem, however, this will be done at the price of conservativeness or significant computational burden. In order to increase computational efficiency, we propose a scheme that uses parameterized conditions of optimality in the adaptive predictive-control fashion. The dual features of the controller are incorporated through scenario-based (multi-stage) approach, which allows for modeling of the adaptive robust decision problem and for projecting this decision into predictions of the controller. The proposed approach is illustrated on a case study from batch membrane filtration.

[1]  T. Söderström ERRORS-IN-VARIABLES METHODS IN SYSTEM IDENTIFICATION , 2006 .

[2]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[3]  Radoslav Paulen,et al.  Dual robust nonlinear model predictive control: A multi-stage approach , 2018, Journal of Process Control.

[4]  Frank Allgöwer,et al.  Robust MPC with recursive model update , 2019, Autom..

[5]  Boris Houska,et al.  Real-time Algorithm for Self-Reflective Model Predictive Control , 2016, 1611.02408.

[6]  S. Pushpavanam Control and optimisation of process systems , 2013 .

[7]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[8]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[9]  Kai Sundmacher,et al.  Toward Fast Dynamic Optimization: An Indirect Algorithm That Uses Parsimonious Input Parameterization , 2018, Industrial & Engineering Chemistry Research.

[10]  Daniel Sarabia,et al.  Improving scenario decomposition algorithms for robust nonlinear model predictive control , 2015, Comput. Chem. Eng..

[11]  Lorenzo Fagiano,et al.  Adaptive model predictive control for linear time varying MIMO systems , 2019, Autom..

[12]  Zoltán Kovács,et al.  Optimal feeding strategy of diafiltration buffer in batch membrane processes , 2012 .

[13]  József Bokor,et al.  Analysis and Control of Nonlinear Process Systems , 2004 .

[14]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[15]  Tarek Raïssi,et al.  Set-membership methodology for model-based prognosis. , 2017, ISA transactions.

[16]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[17]  Hong Jang,et al.  A robust NMPC scheme for semi-batch polymerization reactors , 2016 .

[18]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[19]  Bjarne A. Foss,et al.  Dual adaptive model predictive control , 2017, Autom..

[20]  R. Padilla,et al.  An innovations approach to dual control , 1982 .

[21]  Sebastian Engell,et al.  Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty , 2013 .

[22]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[23]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[24]  Bjarne A. Foss,et al.  Scenario Based Implicit Dual Model Predictive Control , 2015 .

[25]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[26]  Lorenzo Fagiano,et al.  Adaptive receding horizon control for constrained MIMO systems , 2014, Autom..

[27]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[28]  Heinz Unbehauen,et al.  Adaptive dual control systems: a survey , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[29]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[30]  Matthew D. Stuber,et al.  Robust simulation and design using semi-infinite programs with implicit functions , 2011 .

[31]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[32]  Anwesh Reddy Gottu Mukkula,et al.  Model-based design of optimal experiments for nonlinear systems in the context of guaranteed parameter estimation , 2017, Comput. Chem. Eng..

[33]  C. Liou,et al.  Exact linearization and control of a continuous stirred tank reactor , 1995 .

[34]  Benoît Chachuat,et al.  Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs , 2015, J. Glob. Optim..

[35]  César de Prada,et al.  On-Line Scheduling and Control of a Mixed Continuous—Batch Plant , 2011 .

[36]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[37]  D. Bonvin,et al.  Extents of reaction and flow for homogeneous reaction systems with inlet and outlet streams , 2010 .

[38]  Boris Houska,et al.  Towards rigorous robust optimal control via generalized high‐order moment expansion , 2018 .

[39]  Jong Min Lee,et al.  An approximate dynamic programming based approach to dual adaptive control , 2009 .

[40]  A. A. Feldbaum,et al.  DUAL CONTROL THEORY, IV , 1961 .

[41]  Bjarne A. Foss,et al.  MPC-based dual control with online experiment design , 2015 .

[42]  Diogo Rodrigues,et al.  Dynamic Optimization of Reaction Systems via Exact Parsimonious Input Parameterization , 2019 .

[43]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[44]  Miroslav Fikar,et al.  Economically optimal batch diafiltration via analytical multi-objective optimal control , 2015 .

[45]  Radoslav Paulen,et al.  Robust Nonlinear Model Predictive Control with Reduction of Uncertainty Via Robust Optimal Experiment Design , 2014 .

[46]  Martin Guay,et al.  Adaptive Model Predictive Control for Constrained Nonlinear Systems , 2008 .

[47]  N. Filatov,et al.  Survey of adaptive dual control methods , 2000 .

[48]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[49]  Jay H. Lee,et al.  Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes , 2005, Autom..

[50]  Johannes P. Schlöder,et al.  Dual Control and Online Optimal Experimental Design , 2017, SIAM J. Sci. Comput..

[51]  Sebastian Engell,et al.  Towards dual robust nonlinear model predictive control: A multi-stage approach , 2015, 2015 American Control Conference (ACC).