JIM: A time‐dependent, three‐dimensional model of Jupiter's thermosphere and ionosphere

We present the Jovian Ionospheric Model (JIM), a time-dependent, three-dimensional model for the thermosphere and ionosphere of Jupiter. We describe the physical inputs for the hydrodynamic, thermodynamic and chemical components of the model, which is based on the UCL Thermosphere Model of Fuller-Rowell and Rees [1980]. We then present the results of an illustrative simulation in which an initially neutral homogeneous planet evolves for approximately 4 Jovian rotations, under the influence of solar illumination and auroral (electron) precipitation at high latitudes. The model shows that solar zenith angle, auroral activity, ion recombination chemistry and, to a lesser degree, magnetic field orientation, all play a role in forming the dayside and nightside global ionization patterns. We compare auroral and nonauroral/equatorial ionospheric compositions and find the signature of ion transport by fast winds. We also include a localized spot' of precipitation in our model and comment on the associated ionization signatures which develop in response to this To-like aurora. The simulation also develops strong outflows with velocities up to ∼600 m s -1 from the auroral regions, driven mainly by pressure gradients. These pressure gradients, in turn, arise from the differences in chemical composition between the auroral and nonauroral upper thermospheres, as evolution proceeds. This preliminary study indicates a strong potential for JIM in analysis of two-dimensional image data and simulation of time-dependent global events.

[1]  J. Tennyson,et al.  Mid-to-Low Latitude H+3Emission from Jupiter☆ , 1997 .

[2]  P. J. Schinder,et al.  Jupiter's ionosphere: Results from the First Galileo Radio Occultation Experiment , 1997 .

[3]  Jonathan Tennyson,et al.  A baseline spectroscopic study of the infrared auroras of Jupiter , 1997 .

[4]  Ethiraj Venkatapathy,et al.  Thermal Structure of Jupiter's Upper Atmosphere Derived from the Galileo Probe , 1997, Science.

[5]  Roger V. Yelle,et al.  Gravity Waves in Jupiter's Thermosphere , 1997, Science.

[6]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[7]  Alan M. Watson,et al.  Time-Resolved Observations of Jupiter's Far-Ultraviolet Aurora , 1996, Science.

[8]  R. Baron,et al.  Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images , 1996 .

[9]  J. Connerney,et al.  Interpretation of Auroral “Lightcurves” with Application to Jovian H+3Emissions , 1996 .

[10]  G. Danby,et al.  The separable representation of exchange in electron - molecule scattering: I. Elastic scattering and rotational excitation , 1996 .

[11]  A. Dalgarno,et al.  The Ultraviolet Spectrum of the Jovian Dayglow , 1996 .

[12]  J. Harrington,et al.  Solar Wind Control of Jupiter's H+3Auroras , 1996 .

[13]  David Southwood,et al.  Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit , 1996, Nature.

[14]  R. Prangé,et al.  On the Existence of Supersonic Jets in the Upper Atmosphere of Jupiter , 1995 .

[15]  Sundström,et al.  Branching processes in the dissociative recombination of H3+ , 1995, Physical review letters.

[16]  J. H. Waite,et al.  A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope , 1994, Science.

[17]  J. Gérard,et al.  Auroral Lyman α and H2 bands from the giant planets: 1. Excitation by proton precipitation in the Jovian atmosphere , 1994 .

[18]  J. Gérard,et al.  High-resolution spectra of Jupiter's northern auroral ultraviolet emission with the Hubble Space Telescope , 1994 .

[19]  T. Owen,et al.  Images of Excited H3+ at the Foot of the lo Flux Tube in Jupiter's Atmosphere , 1993, Science.

[20]  J. H. Waite,et al.  Thermal profiles in the auroral regions of Jupiter , 1993 .

[21]  John E. P. Connerney,et al.  Magnetic fields of the outer planets , 1993 .

[22]  R. Prangé The UV and IR Jovian aurorae , 1992 .

[23]  H. W. Moos,et al.  Jovian ultraviolet auroral activity, 1981-1991 , 1992 .

[24]  R. Prangé,et al.  Modeling the precipitation flux in the Jovian auroral zones: 1. The model and its application to the UV auroral emissions , 1991 .

[25]  John C. McConnell,et al.  The upper ionospheres of Jupiter and Saturn , 1991 .

[26]  Y. H. Kim,et al.  Densities and vibrational distribution of H3 + in the Jovian auroral ionosphere , 1991 .

[27]  M. Yoshino,et al.  Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular Ions , 1990 .

[28]  J. Mitchell The dissociative recombination of molecular ions , 1990 .

[29]  J. H. Waite,et al.  Detection of H3+ on Jupiter , 1989, Nature.

[30]  K. L. Thompson,et al.  Unidentified emission lines in Jupiter's Northern and Southern 2 micron Aurorae , 1989 .

[31]  T. Fuller‐Rowell,et al.  The response of the thermosphere and ionosphere to magnetospheric forcing , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[32]  R. Yelle H2 emissions from the outer planets , 1988 .

[33]  T. Cravens Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter , 1987 .

[34]  J. McConnell,et al.  H3 + in the Jovian ionosphere , 1987 .

[35]  H. Porter,et al.  Iterative solution of the multistream electron transport equation: 1. Comparison with laboratory beam injection experiments , 1987 .

[36]  Sushil K. Atreya,et al.  Book-Review - Atmospheres and Ionospheres of the Outer Planets and Their Satellites , 1986 .

[37]  J. Geiss,et al.  Diffusion and thermal diffusion in partially ionized gases in the atmospheres of the Sun and planets , 1986 .

[38]  D. Shemansky,et al.  Electron impact excitation of H2 - Rydberg band systems and the benchmark dissociative cross section for H Lyman-alpha , 1985 .

[39]  D. Shemansky An explanation for the H Ly α longitudinal asymmetry in the equatorial spectrum of Jupiter: An outcrop of paradoxical energy deposition in the exosphere , 1985 .

[40]  T. Fuller‐Rowell,et al.  A two‐dimensional, high‐resolution, nested‐grid model of the thermosphere: 1. Neutral response to an electric field “spike” , 1984 .

[41]  J. L. Forand,et al.  Measurement of the branching ratio for the dissociative recombination of H/sub 3//sup +/+e , 1983 .

[42]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[43]  S. Quegan,et al.  A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere - First results on the mid-latitude trough and the light-ion trough , 1982 .

[44]  S. Atreya,et al.  Jupiter - Structure and composition of the upper atmosphere , 1981 .

[45]  T. Fuller‐Rowell,et al.  A three-dimensional, time-dependent simulation of the global dynamical response of the thermosphere to a geomagnetic substorm , 1981 .

[46]  T. Fuller‐Rowell,et al.  A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .

[47]  G. E. Wood,et al.  Radio Science with Voyager at Jupiter: Initial Voyager 2 Results and a Voyager 1 Measure of the Io Torus , 1979, Science.

[48]  S. Atreya,et al.  An interpretation of the Voyager measurement of jovian electron density profiles , 1979, Nature.

[49]  G. E. Wood,et al.  Radio Science with Voyager 1 at Jupiter: Preliminary Profiles of the Atmosphere and Ionosphere , 1979, Science.

[50]  L. Heroux,et al.  Aeronomical reference spectrum for solar UV below 2000 Å , 1978 .

[51]  R. Heelis,et al.  Ion convection and the formation of the mid‐latitude F region ionization trough , 1978 .

[52]  D. Auerbach,et al.  Merged electron-ion beam experiments. I. Method and measurements of (e-H2+) and (e-H3+) dissociative-recombination cross sections , 1977 .

[53]  A. Kliore,et al.  The Pioneer 10 radio occultation measurements of the ionosphere of Jupiter , 1975 .

[54]  B. Peart,et al.  The production of de-excited H3+ ions and measurements of the energies of two electronically-excited states , 1974 .

[55]  W. Huntress,et al.  Ion‐molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium , 1974 .

[56]  R. Johnsen,et al.  Measurements of Recombination of Electrons with H3+ and H5+ Ions , 1973 .

[57]  J. Olivero,et al.  Photoelectron excitation of the Jupiter dayglow , 1973 .

[58]  A. Kuppermann,et al.  Electron impact excitation of H2O , 1973 .

[59]  A. Green,et al.  Ionization cross sections and secondary electron distributions , 1972 .

[60]  B. Peart,et al.  Collisions between electrons and H2+ ions. V. Measurements of cross sections for dissociative recombination , 1972 .

[61]  A. Nagy,et al.  Photoelectron fluxes in the ionosphere , 1970 .

[62]  Ralph Shapiro,et al.  Smoothing, filtering, and boundary effects , 1970 .

[63]  F. S. Johnson,et al.  Atmospheric composition in the lower thermosphere. , 1966 .

[64]  O. Gingerich Review of Opacity Calculations , 1964 .

[65]  G. R. Cook,et al.  Photoionization and Absorption Cross Sections of H 2 and D 2 in the Vacuum Ultraviolet Region , 1964 .

[66]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[67]  Jonathan Tennyson,et al.  Latitudinal Temperature Variations of Jovian H+3 , 1994 .

[68]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[69]  L. C. Wilkinson,et al.  Universal time effects on plasma convection in the geomagnetic frame , 1986 .

[70]  M. Kivelson,et al.  Physics of the Jovian Magnetosphere , 1983 .

[71]  D. Strobel,et al.  Physics of the Jovian magnetosphere. 2. Ionosphere. , 1983 .

[72]  J. Connerney,et al.  Jupiter's magnetic field and magnetosphere , 1983 .

[73]  P. Woiceshyn,et al.  The Pioneer 11 radio occultation measurements of the Jovian ionosphere , 1976 .

[74]  S. Atreya,et al.  Model ionospheres of Jupiter , 1976 .

[75]  E. A. Mason,et al.  The diffusion of atoms and molecules , 1970 .

[76]  O. Gingerich Theory and observation of normal stellar atmospheres , 1969 .