Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi

Context. The soft X-ray emission from high density plasma observed in several CTTS is usually associated with the accretion process. However, it is still unclear whether this high density “cool” plasma is heated in the accretion shock, or if it is coronal plasma fed or modified by the accretion process. Aims. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph. In this paper, we analyze Chandra grating spectrometer data and attempt to correlate the observed X-ray emitting plasma components with the characteristics of the accretion process and the stellar magnetic field constrained by simultaneous optical observations. Methods. We analyze a 200 ks Chandra/HETGS observation, subdivided into two 100 ks segments, of the CTTS V2129 Oph. For the two observing segments corresponding to two different phases within one stellar rotation, we measure the density of the cool plasma component and the emission measure distribution. Results. The X-ray emitting plasma covers a wide range of temperatures: from 2 up to 34 MK. The cool plasma component of V2129 Oph (T ≈ 3−4 MK) varies between the two segments of the Chandra observation: during the first observing segment high density plasma (log N_c = 12.1_(-1.1)^(+0.6)) with high EM at ~3−4 MK is present, whereas, during the second segment, this plasma component has lower EM and lower density (log N_e 3 R_⋆). Conclusions. Our observation provides additional confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. In particular, during the first time interval a direct view of the shock region is possible, while, during the second, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing the accretion-driven X-rays.

[1]  G. Peres,et al.  Multiwavelength diagnostics of accretion in an X-ray selected sample of CTTSs , 2010, 1011.5915.

[2]  A. Maggio,et al.  On the observability of T Tauri accretion shocks in the X-ray band , 2010, 1007.2423.

[3]  F. Favata,et al.  Correlated optical and X-ray variability in CTTS - Indications of absorption-modulated emission , 2010, 1006.0041.

[4]  D. Burton,et al.  The disk-bearing young star IM Lupi - X-ray properties and limits on accretion , 2010, 1005.4459.

[5]  K. Stassun,et al.  A SEARCH FOR STAR–DISK INTERACTION AMONG THE STRONGEST X-RAY FLARING STARS IN THE ORION NEBULA CLUSTER , 2010, 1005.2128.

[6]  N. S. Brickhouse,et al.  A DEEP CHANDRA X-RAY SPECTRUM OF THE ACCRETING YOUNG STAR TW HYDRAE , 2010, 1001.0750.

[7]  A. Maggio,et al.  X-ray emitting MHD accretion shocks in classical T Tauri stars - Case for moderate to high plasma-β values , 2009, 0912.1799.

[8]  G. Branduardi‐Raymont,et al.  High Resolution X-ray Spectroscopy: Towards IXO , 2009 .

[9]  Cambridge,et al.  X-ray optical depth diagnostics of T Tauri accretion shocks , 2009, 0909.0218.

[10]  G. Chabrier,et al.  EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H–R DIAGRAMS? , 2009, 0907.3886.

[11]  B. Ercolano,et al.  X-RAY IRRADIATED PROTOPLANETARY DISK ATMOSPHERES. II. PREDICTIONS FROM MODELS IN HYDROSTATIC EQUILIBRIUM , 2009, 0905.1001.

[12]  E. Feigelson,et al.  X-Ray Flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks , 2008, 0807.3007.

[13]  M. Jardine,et al.  Coronal structure of the classical T Tauri star V2129 Oph , 2008, 0802.2213.

[14]  J. Donati,et al.  Coronal structure of the cTTS V2129 Oph , 2008, 0802.2213.

[15]  H. M. Gunther,et al.  X-ray accretion signatures in the close CTTS binary V4046 Sgr , 2006, astro-ph/0610121.

[16]  W. Herbst,et al.  Results of the ROTOR-program II. The long-term photometric variability of weak-line T Tauri stars ⋆ , 2008, 0801.3543.

[17]  F. Ménard,et al.  Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph , 2007, 0709.1414.

[18]  A. Telleschi,et al.  The X-ray soft excess in classical T Tauri stars , 2007, 0709.0881.

[19]  N. Schulz,et al.  Evidence for Accretion in the High-Resolution X-Ray Spectrum of the T Tauri Star System Hen 3-600 , 2007, 0708.4393.

[20]  J. Schmitt,et al.  X-rays from RU Lupi: accretion and winds in classical T Tauri stars , 2007, 0706.2879.

[21]  F. Reale,et al.  Diagnostics of stellar flares from X-ray observations: from the decay to the rise phase , 2007, 0705.3254.

[22]  K. Wood,et al.  Why are accreting T Tauri stars observed to be less luminous in X‐rays than non‐accretors? , 2007, 0704.2958.

[23]  E. Feigelson,et al.  Coronal Abundances in Orion Nebula Cluster Stars , 2007, astro-ph/0703439.

[24]  J. Robrade,et al.  X-ray emission from classical T Tauri stars: Accretion shocks and coronae? , 2007, astro-ph/0702579.

[25]  Italy.,et al.  X-ray emission from MP Muscae : an old classical T Tauri star , 2007, astro-ph/0701765.

[26]  Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri , 2006, astro-ph/0611787.

[27]  Ny,et al.  X-rays from T Tauri: a test case for accreting T Tauri stars , 2006, astro-ph/0612589.

[28]  L. Prato,et al.  Investigating Disk Evolution: A High Spatial Resolution Mid-Infrared Survey of T Tauri Stars , 2005, astro-ph/0509728.

[29]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[30]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[31]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[32]  Oxford,et al.  X-rays from accretion shocks in T Tauri stars: The case of BP Tau , 2005, astro-ph/0503144.

[33]  C. Clarke,et al.  The effects of X‐ray photoionization and heating on the structure of circumstellar discs , 2004 .

[34]  J. Drake,et al.  The Density of Coronal Plasma in Active Stellar Coronae , 2004, astro-ph/0405019.

[35]  Qizhou Zhang,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[36]  N. Schulz,et al.  The Coronal X-Ray Spectrum of the Multiple Weak-lined T Tauri Star System HD 98800 , 2004, astro-ph/0403062.

[37]  J. Schmitt,et al.  X-ray emission from a metal depleted accretion shock onto the classical T Tauri star TW Hya , 2004 .

[38]  E. Feigelson,et al.  Determination of the gas-to-dust ratio in nearby dense clouds using X-ray absorption measurements , 2003, astro-ph/0306447.

[39]  H. Mason,et al.  CHIANTI—An Atomic Database for Emission Lines. VI. Proton Rates and Other Improvements , 2002, astro-ph/0209493.

[40]  N. Batalha,et al.  Variability of Southern T Tauri Stars (VASTT). III. The Continuum Flux Changes of the TW Hydrae Bright Spot , 2002 .

[41]  N. Schulz,et al.  Evidence for Accretion: High-Resolution X-Ray Spectroscopy of the Classical T Tauri Star TW Hydrae , 2001, astro-ph/0111049.

[42]  Vinay L. Kashyap,et al.  PINTofALE: Package for the Interactive Analysis of Line Emission , 2000 .

[43]  W. Herbst,et al.  The Search for Rotational Modulation of T Tauri Stars in the Ophiuchus Dark Clouds , 1998 .

[44]  V. Kashyap,et al.  Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: Application to Solar Extreme-Ultraviolet Spectra , 1998 .

[45]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[46]  E. Feigelson,et al.  ROSAT X-Ray Sources Embedded in the rho Ophiuchi Cloud Core , 1995 .

[47]  Eve C. Ostriker,et al.  Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model , 1994 .

[48]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[49]  C. Bertout T Tauri Stars: Wild as Dust , 1989 .

[50]  A. H. Gabriel,et al.  Interpretation of Solar Helium-Like Ion Line Intensities , 1969 .