Monte Carlo simulations of the underwater detection of illicit war remnants with neutron-based sensors

[1]  M. Silarski,et al.  Performance of the SABAT Neutron-Based Explosives Detector Integrated with an Unmanned Ground Vehicle: A Simulation Study , 2022, Sensors.

[2]  M. Silarski,et al.  Combined BNCT and PET for theranostics , 2021, Bio Algorithms Med Syst..

[3]  B. Howe,et al.  Underwater Time-Gated Standoff Raman Sensor for In Situ Chemical Sensing , 2021, Applied spectroscopy.

[4]  M. Szubska,et al.  Exposure status of sea-dumped chemical warfare agents in the Baltic Sea. , 2020, Marine environmental research.

[5]  M. Silarski Hazardous Substance Detection in Water Environments using Neutron Beams: the SABAT Project , 2019, Problems of Mechatronics Armament Aviation Safety Engineering.

[6]  E. Kubicz,et al.  Monte Carlo N-Particle simulations of an underwater chemical threats detection system using neutron activation analysis , 2019, Journal of Instrumentation.

[7]  A. Gajos,et al.  Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA SoC Devices , 2018, IEEE Transactions on Medical Imaging.

[8]  J. Raj,et al.  Underwater detection of dangerous substances : status of the SABAT project , 2017, 1711.08457.

[9]  M. Moszynski,et al.  Characterization of some modern scintillators recommended for use on large fusion facilities in γ-ray spectroscopy and tomographic measurements of γ-emission profiles , 2017 .

[10]  Tim Acker,et al.  Underwater threat detection and tracking using multiple sensors and advanced processing , 2016, 2016 IEEE International Carnahan Conference on Security Technology (ICCST).

[11]  Jacek Rzadkiewicz,et al.  Digital Acquisition in High Count Rate Gamma-Ray Spectrometry , 2016, IEEE Transactions on Nuclear Science.

[12]  M. Silarski,et al.  Design of the SABAT system for underwater detection of dangerous substances , 2016, 1602.05214.

[13]  V. Valković 14 MeV Neutrons: Physics and Applications , 2015 .

[14]  Jaeyoung Cho,et al.  Literature Survey on Underwater Threat Detection , 2015 .

[15]  M. Silarski,et al.  Project of the underwater system for chemical threat detection , 2015, 1501.04120.

[16]  M. Silarski APPLICATIONS OF NEUTRON ACTIVATION SPECTROSCOPY , 2013, 1308.3605.

[17]  Donald Kent Parsons,et al.  Continuous Energy Neutron Cross Section Data Tables Based upon ENDF/B-VII.1 , 2013 .

[18]  John S. Hendricks,et al.  Initial MCNP6 Release Overview , 2012 .

[19]  F. Tauber,et al.  Particulate organic carbon (POC) in surface sediments of the Baltic Sea , 2011 .

[20]  Richard T. Pagh,et al.  Compendium of Material Composition Data for Radiation Transport Modeling , 2011 .

[21]  Richard Mlcak,et al.  MEMS-based gravimetric sensors for explosives detection , 2010, 2010 IEEE International Conference on Technologies for Homeland Security (HST).

[22]  Jacek Namieśnik,et al.  The Baltic Sea as a dumping site of chemical munitions and chemical warfare agents , 2009 .

[23]  Spent Fuel Assay Neutron Generators for Spent Fuel Assay , 2011 .

[24]  M. Vanhoucke A simulation study , 2008 .