Solving 3d Gravity with Virasoro TQFT
暂无分享,去创建一个
[1] C. Behan,et al. Coupled Minimal Conformal Field Theory Models Revisited. , 2023, Physical review letters.
[2] T. Mertens,et al. A proposal for 3d quantum gravity and its bulk factorization , 2022, Journal of High Energy Physics.
[3] Baur Mukhametzhanov,et al. JT gravity with matter, generalized ETH, and Random Matrices , 2022, 2209.02131.
[4] Lorenz Eberhardt. Off-shell Partition Functions in 3d Gravity , 2022, 2204.09789.
[5] F. Benini,et al. Factorization and global symmetries in holography , 2022, SciPost Physics.
[6] Thomas Hartman,et al. Semiclassical 3D gravity as an average of large-c CFTs , 2022, Journal of High Energy Physics.
[7] Jean-Marc Schlenker,et al. No ensemble averaging below the black hole threshold , 2022, Journal of High Energy Physics.
[8] D. Liska,et al. Non-Gaussianities in the statistical distribution of heavy OPE coefficients and wormholes , 2021, Journal of High Energy Physics.
[9] T. Takayanagi,et al. Holography in de Sitter Space via Chern-Simons Gauge Theory. , 2021, Physical review letters.
[10] D. Stanford,et al. Sphere and disk partition functions in Liouville and in matrix integrals , 2021, Journal of High Energy Physics.
[11] D. Anninos,et al. Three-dimensional de Sitter horizon thermodynamics , 2021, Journal of High Energy Physics.
[12] H. Ooguri,et al. Narain to Narnia , 2021, Communications in Mathematical Physics.
[13] G. Turiaci,et al. The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral , 2020, 2006.11317.
[14] Jordan S. Cotler,et al. AdS3 gravity and random CFT , 2020, Journal of High Energy Physics.
[15] J. de Boer,et al. Random statistics of OPE coefficients and Euclidean wormholes , 2020, Classical and Quantum Gravity.
[16] Clifford V. Johnson. Nonperturbative Jackiw-Teitelboim gravity , 2020 .
[17] A. Maloney,et al. Pure gravity and conical defects , 2020, Journal of High Energy Physics.
[18] A. Castro,et al. Gravitational Wilson lines in 3D de Sitter , 2020, Journal of High Energy Physics.
[19] L. Alday,et al. Rademacher expansions and the spectrum of 2d CFT , 2019, Journal of High Energy Physics.
[20] A. Maloney,et al. Universal dynamics of heavy operators in CFT2 , 2019, Journal of High Energy Physics.
[21] E. Witten,et al. JT gravity and the ensembles of random matrix theory , 2019, Advances in Theoretical and Mathematical Physics.
[22] H. Ooguri,et al. Light-cone modular bootstrap and pure gravity , 2019, Physical Review D.
[23] H. Erbin,et al. Quantum gravity from timelike Liouville theory , 2019, Journal of High Energy Physics.
[24] Luca V. Iliesiu,et al. An exact quantization of Jackiw-Teitelboim gravity , 2019, Journal of High Energy Physics.
[25] Thomas Hartman,et al. Sphere packing and quantum gravity , 2019, Journal of High Energy Physics.
[26] Baur Mukhametzhanov,et al. Modular invariance, tauberian theorems and microcanonical entropy , 2019, Journal of High Energy Physics.
[27] J. Maldacena,et al. Two dimensional nearly de Sitter gravity , 2019, Journal of High Energy Physics.
[28] S. Shenker,et al. JT gravity as a matrix integral , 2019, 1903.11115.
[29] N. Toumbas,et al. Liouville quantum gravity , 2019, Nuclear Physics B.
[30] N. Afkhami-Jeddi,et al. Fast conformal bootstrap and constraints on 3d gravity , 2019, Journal of High Energy Physics.
[31] H. Verschelde,et al. Fine structure of Jackiw-Teitelboim quantum gravity , 2018, Journal of High Energy Physics.
[32] Eric Perlmutter,et al. Quantum Regge trajectories and the Virasoro analytic bootstrap , 2018, Journal of High Energy Physics.
[33] Yuya Kusuki. Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity , 2018, Journal of High Energy Physics.
[34] Jordan S. Cotler,et al. A theory of reparameterizations for AdS3 gravity , 2018, Journal of High Energy Physics.
[35] E. Pomoni,et al. Toda Conformal Blocks, Quantum Groups, and Flat Connections , 2017, Communications in Mathematical Physics.
[36] Ying-Hsuan Lin,et al. Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ , 2017, Journal of High Energy Physics.
[37] Jordan S. Cotler,et al. Black holes and random matrices , 2016, 1611.04650.
[38] A. Maloney,et al. A conformal block Farey tail , 2016, 1609.02165.
[39] Ying-Hsuan Lin,et al. Modular bootstrap revisited , 2016, Journal of High Energy Physics.
[40] A. Kapustin,et al. State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter , 2016, 1605.01640.
[41] J. Teschner,et al. Quantisation of Super Teichmüller Theory , 2015, 1512.02617.
[42] A. Maloney. Geometric Microstates for the Three Dimensional Black Hole , 2015, 1508.04079.
[43] M. Porrati,et al. On a canonical quantization of 3D Anti de Sitter pure gravity , 2015, 1508.03638.
[44] S. Ribault,et al. Liouville theory with a central charge less than one , 2015, 1503.02067.
[45] T. Dimofte,et al. Complex Chern–Simons Theory at Level k via the 3d–3d Correspondence , 2014, 1409.0857.
[46] C. Keller,et al. Poincaré series, 3D gravity and CFT spectroscopy , 2014, 1407.6008.
[47] R. Kashaev,et al. A TQFT from Quantum Teichmüller Theory , 2014 .
[48] C. Keller,et al. Universal spectrum of 2d conformal field theory in the large c limit , 2014, 1405.5137.
[49] V. Schomerus,et al. The universal Racah-Wigner symbol for Uq(osp(1|2)) , 2013, 1307.6866.
[50] C. Keller,et al. Constraints on 2d CFT partition functions , 2013, 1307.6562.
[51] J. Teschner,et al. On the relation between the modular double of $U_q(sl(2,R))$ and the quantum Teichmueller theory , 2013, 1302.3454.
[52] K. Krasnov,et al. The Universal Phase Space of AdS3 Gravity , 2011, 1111.6507.
[53] I. Ip. Representation of the Quantum Plane, its Quantum Double and Harmonic Analysis on $GL_q^+(2,R)$ , 2011, 1108.5365.
[54] Edward Witten,et al. Analytic continuation of Liouville theory , 2011, 1108.4417.
[55] L. Hadasz,et al. Braiding properties of the N = 1 super-conformal blocks (Ramond sector) , 2011, 1108.2355.
[56] Alejandra Castro,et al. A de Sitter Farey Tail , 2011, 1103.4620.
[57] T. Dimofte,et al. Quantum Riemann Surfaces in Chern-Simons Theory , 2011, 1102.4847.
[58] H. Poincaré,et al. On Analysis Situs , 2010 .
[59] S. Pfenninger,et al. Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.
[60] H. Murakami. An Introduction to the Volume Conjecture , 2010, 1002.0126.
[61] E. Witten. Analytic Continuation Of Chern-Simons Theory , 2010, 1001.2933.
[62] S. Hellerman. A universal inequality for CFT and quantum gravity , 2009, 0902.2790.
[63] L. Hadasz,et al. Braiding and fusion properties of the Neveu-Schwarz super-conformal blocks , 2008, 0811.1226.
[64] Joseph Maher,et al. Random Heegaard splittings , 2008, 0809.4881.
[65] Peter Milley. Minimum volume hyperbolic 3‐manifolds , 2008, 0809.0346.
[66] M. Lackenby,et al. The maximal number of exceptional Dehn surgeries , 2008, 0808.1176.
[67] A. Maloney,et al. One-loop Partition Functions of 3D Gravity , 2008, 0804.1773.
[68] I. Agol. The minimal volume orientable hyperbolic 2-cusped 3-manifolds , 2008, 0804.0043.
[69] J. Barrett,et al. The Ponzano–Regge model , 2008, 0803.3319.
[70] E. Witten,et al. Quantum gravity partition functions in three dimensions , 2007, 0712.0155.
[71] X. Yin. Partition Functions of Three-Dimensional Pure Gravity , 2007, 0710.2129.
[72] A. Litvinov,et al. Correlation functions in conformal Toda field theory I , 2007, 0709.3806.
[73] L. Hadasz. On the fusion matrix of the N=1 Neveu-Schwarz blocks , 2007, 0707.3384.
[74] Edward Witten,et al. Three-Dimensional Gravity Revisited , 2007, 0706.3359.
[75] G. Mess. Lorentz spacetimes of constant curvature , 2007, 0706.1570.
[76] David Gabai,et al. Minimum volume cusped hyperbolic three-manifolds , 2007, 0705.4325.
[77] M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces , 2006 .
[78] Jean-Marc Schlenker,et al. On the Renormalized Volume of Hyperbolic 3-Manifolds , 2006, math/0607081.
[79] Igor Rivin. Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms , 2006, Duke Mathematical Journal.
[80] Joseph Maher. Random walks on the mapping class group , 2006, math/0604433.
[81] M. Mirzakhani. Weil-Petersson volumes and intersection theory on the moduli space of curves , 2006, Journal of the American Mathematical Society.
[82] Jean-Marc Schlenker,et al. Minimal surfaces and particles in 3-manifolds , 2005, math/0511441.
[83] V. Petkova,et al. Bulk Correlation Functions in 2d Quantum Gravity , 2005, hep-th/0505078.
[84] E. Livine,et al. Ponzano–Regge model revisited: III. Feynman diagrams and effective field theory , 2005, hep-th/0502106.
[85] S. Ribault,et al. H3+-WZNW correlators from Liouville theory , 2005, hep-th/0502048.
[86] A. Zamolodchikov. Three-point function in the minimal Liouville gravity , 2005, Theoretical and Mathematical Physics.
[87] S. Carlip. Quantum Gravity in 2 + 1 Dimensions: The Case of a Closed Universe , 2004, Living reviews in relativity.
[88] François Guéritaud,et al. On Canonical Triangulations of Once-Punctured Torus Bundles and Two-bridge link complements , 2004, math/0406242.
[89] J. Teschner. An analog of a modular functor from quantized Teichm , 2004, math/0405332.
[90] L. Freidel,et al. Ponzano–Regge model revisited: I. Gauge fixing, observables and interacting spinning particles , 2004, hep-th/0401076.
[91] J. Teschner. From Liouville theory to the quantum geometry of Riemann surfaces , 2003, hep-th/0308031.
[92] V. Kazakov,et al. Nonperturbative effects in matrix models and D-branes , 2003, hep-th/0306177.
[93] S. Gukov. Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial , 2003, hep-th/0306165.
[94] V. Schomerus. Rolling tachyons from Liouville theory , 2003, hep-th/0306026.
[95] J. Teschner. ON THE RELATION BETWEEN QUANTUM LIOUVILLE THEORY AND THE QUANTIZED TEICHMÜLLER SPACES , 2003, hep-th/0303149.
[96] T. R. Govindarajan,et al. Quantum gravity on dS3 , 2002, hep-th/0203219.
[97] J. Teschner,et al. Boundary Liouville field theory: boundary three-point function , 2002 .
[98] C. Leininger,et al. The co-rank conjecture for 3-manifold groups. , 2002, math/0202261.
[99] J. Murakami,et al. Kashaev's Conjecture and the Chern-Simons Invariants of Knots and Links , 2002, Exp. Math..
[100] J. Teschner. Liouville theory revisited , 2001, hep-th/0104158.
[101] K. Krasnov. Holography and Riemann surfaces , 2000, hep-th/0005106.
[102] J. Teschner,et al. Liouville bootstrap via harmonic analysis on a noncompact quantum group , 1999, hep-th/9911110.
[103] L. Chekhov,et al. A quantum Teichmüller space , 1999 .
[104] M. Ortiz,et al. Quantum three-dimensional de Sitter space , 1998, hep-th/9807216.
[105] Kostas Skenderis,et al. The holographic Weyl anomaly , 1998, Journal of High Energy Physics.
[106] R. Kashaev. Quantization of Teichmüller Spaces and the Quantum Dilogarithm , 1997, q-alg/9705021.
[107] B. Wajnryb. Mapping class group of a surface is generated by two elements , 1996 .
[108] R. Kashaev. The Hyperbolic Volume of Knots from the Quantum Dilogarithm , 1996, q-alg/9601025.
[109] J. Schultens. Heegaard splittings of Seifert fibered spaces with boundary , 1995 .
[110] A.B.Zamolodchikov,et al. Structure Constants and Conformal Bootstrap in Liouville Field Theory , 1995, hep-th/9506136.
[111] M. Henneaux,et al. The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant , 1995, gr-qc/9506019.
[112] G. Leibbrandt. CHERN-SIMONS THEORY , 1994 .
[113] H. Dorn,et al. Two and three point functions in Liouville theory , 1994, hep-th/9403141.
[114] H. Ooguri. Schwinger-Dyson Equation in Three-Dimensional Simplicial Quantum Gravity , 1992, hep-th/9210028.
[115] Vladimir Turaev,et al. State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .
[116] D. Boulatov. A Model of three-dimensional lattice gravity , 1992, hep-th/9202074.
[117] E. Witten. On holomorphic factorization of WZW and coset models , 1992 .
[118] H. Ooguri,et al. Discrete and Continuum Approaches to Three-Dimensional Quantum Gravity , 1991, hep-th/9108006.
[119] E. Witten. Quantization of Chern-Simons gauge theory with complex gauge group , 1991 .
[120] M. Ochiai. Heegaard diagrams of 3-manifolds , 1991 .
[121] S. Shenker,et al. STRINGS IN LESS THAN ONE DIMENSION , 1990 .
[122] D. Gross,et al. Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.
[123] Nathan Seiberg,et al. Remarks on the canonical quantization of the Chern-Simons-Witten theory , 1989 .
[124] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[125] E. Witten. Topology Changing Amplitudes in (2+1)-Dimensional Gravity , 1989 .
[126] G. Moore,et al. Classical and quantum conformal field theory , 1989 .
[127] Edward Witten,et al. (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .
[128] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[129] E. Witten. Coadjoint orbits of the Virasoro group , 1988 .
[130] A. Achúcarro,et al. A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories , 1986 .
[131] Marc Henneaux,et al. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .
[132] T. Fukuyama,et al. Gauge theory of two-dimensional gravity , 1985 .
[133] Vladimir Kazakov,et al. Critical properties of randomly triangulated planar random surfaces , 1985 .
[134] A. Zamolodchikov. On the entropy of random surfaces , 1982 .
[135] Dennis Sullivan,et al. On The Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions , 1981 .
[136] S. S. Strogalov. ON POINCARÉ SERIES , 1978 .
[137] T. Regge,et al. SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .
[138] Edwin E. Moise,et al. Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .
[139] N. Steenrod,et al. The Group of Isometries of a Riemannian Manifold , 1939 .
[140] K. Tamvakis. Symmetries , 2019, Undergraduate Texts in Physics.
[141] S. Hensel. A PRIMER ON HANDLEBODY GROUPS , 2018 .
[142] M. Yamazaki,et al. SL(2, R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls , 2011 .
[143] Hua Bai. A UNIQUENESS PROPERTY FOR THE QUANTIZATION OF TEICHMÜLLER SPACES , 2008 .
[144] M. Flohr,et al. Conformal Field Theory , 2006 .
[145] Silvia Benvenuti,et al. A Lego-Teichmüller game I , 2003 .
[146] 松崎 克彦,et al. Hyperbolic manifolds and Kleinian groups , 1998 .
[147] M. Schmaltz,et al. Supersymmetric Gauge Theories , 2010 .
[148] Jeffrey R. Weeks,et al. Symmetries, Isometries and Length Spectra of Closed Hyperbolic Three-Manifolds , 1994, Exp. Math..
[149] Stephen P. Humphries. Generators for the mapping class group , 1979 .
[150] W. Thurston. The geometry and topology of 3-manifolds , 1979 .
[151] Edwin E. Moise,et al. Affine Structures in 3-Manifolds VIII. Invariance of the Knot-Types; Local Tame Imbedding , 1954 .
[152] P. Heegaard,et al. Sur l'«Analysis situs» , 1916 .
[153] L. Bers. SIMULTANEOUS UNIFORMIZATION , 2022 .
[154] Jean-Marc Menaud,et al. SNAPPY , 2022, Proceedings of the 36th Annual ACM Symposium on Applied Computing.
[155] J. Eschner,et al. Clebsch-gordan and Racah-wigner Coefficients for a Continuous Series of Representations of U Q (sl(2, R)) , 2022 .