New (3$$\varvec{+}$$+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions

We construct new ($$3+1$$3+1)-dimensional Burgers and Sharma–Tasso–Olver-type equations. We determine the dispersion relation for each of the newly derived models. By using the simplified Hirota’s method, we derive multiple-soliton solutions for each equation. We derive a generalized dispersion relation that works for both equations.

[1]  Abdul-Majid Wazwaz Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions , 2010, J. Frankl. Inst..

[2]  Chaudry Masood Khalique,et al.  A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model , 2015, Appl. Math. Lett..

[3]  Abdul-Majid Wazwaz,et al.  Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities , 2015, Nonlinear Dynamics.

[4]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[5]  Abdul-Majid Wazwaz,et al.  Combined equations of the Burgers hierarchy: multiple kink solutions and multiple singular kink solutions , 2010, J. Frankl. Inst..

[6]  Abdul-Majid Wazwaz,et al.  New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions , 2015 .

[7]  Anjan Biswas,et al.  Stationary solutions for nonlinear dispersive Schrödinger’s equation , 2011 .

[8]  Yan-Ze Peng A New (2 + 1)-Dimensional KdV Equation and Its Localized Structures , 2010 .

[9]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[10]  Abdul-Majid Wazwaz NEW (3+1)-DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS WITH BURGERS AND SHARMA-TASSO-OLVER EQUATIONS CONSTITUTING THE MAIN PARTS , 2015 .

[11]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[12]  B. Kolev Geometric Differences between the Burgers and the Camassa-Holm Equations , 2008 .

[13]  Abdul-Majid Wazwaz,et al.  A KdV6 hierarchy: Integrable members with distinct dispersion relations , 2015, Appl. Math. Lett..

[14]  Optical solitons with power law nonlinearity using Lie group analysis , 2009 .

[15]  Anjan Biswas,et al.  Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients , 2009 .

[16]  A. Wazwaz,et al.  A new integrable ($$3+1$$3+1)-dimensional KdV-like model with its multiple-soliton solutions , 2016 .

[17]  A. Wazwaz A New Integrable (2+1)-Dimensional Generalized Breaking Soliton Equation: N-Soliton Solutions and Traveling Wave Solutions , 2016 .

[18]  New solutions for two integrable cases of a generalized fifth-order nonlinear equation , 2015 .

[19]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[20]  A. Biswas Solitary waves for power-law regularized long-wave equation and R(m,n) equation , 2010 .

[21]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[22]  W. Moslem,et al.  Ion-acoustic dark solitons collision in an ultracold neutral plasma , 2015 .