Gender classification based on local binary pattern
暂无分享,去创建一个
提出了两种基于局部二元模式(Local Binary Pattern,LBP)算子的人脸性别分类方法:级联LBP方法和boosting LBP方法.前一种方法遵循从局部到整体的级联策略,使用LBP算子对由小波分解得到的细节图像进行特征提取,以达到扩充特征提取范围和增强所提取特征的有效性的目的,随后采用自适应加权机制对人脸图像的各个分块赋以不同的权值.后一种方法采用可变尺寸的子窗口对人脸图像进行扫描,在扫描所得的每个子窗口中,使用LBP算子对该子窗口提取LBP直方图.计算样本图像的LBP直方图和模板的LBP直方图之间的度量,并由此构建弱分类器集.利用Adaboost算法选取最有效的若干个弱分类器集组合成为强分类器.进行了三个基于LBP算子的人脸性别分类实验,实验所使用的训练集和测试集皆选自FERET人脸数据库.实验结果证明:LBP算子能有效地从人脸图像中提取出针对人脸性别分类的特征,并可以达到人脸性别分类的目的.所提出的两种基于LBP算子的方法可以有效的解决传统LBP方法所存在的特征提取范围有限、加权机制客观性不足等问题.