Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover

The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (∼20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.

[1]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[2]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[3]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[4]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[5]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[6]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[7]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[8]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[9]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[10]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[11]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[12]  D. Rogers,et al.  Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere , 2003 .

[13]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[14]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[15]  P. Gierasch,et al.  Wind streaks on Mars: Meteorological control of occurence and mode of formation , 1981 .

[16]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[17]  David C. Catling,et al.  The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars , 2003 .

[18]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[19]  P. Christensen,et al.  Thermal infrared emission spectroscopy of natural surfaces : Application to desert varnish coatings on rocks. , 1993 .

[20]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[21]  P. Christensen,et al.  Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .

[22]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[23]  N. O. Snider,et al.  Mantled and exhumed terrains in Terra Meridiani, Mars , 2002 .

[24]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[25]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[26]  Michael Bruce Wyatt,et al.  Global geologic context for rock types and surface alteration on Mars , 2004 .

[27]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[28]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[29]  H. McSween,et al.  Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body , 1983 .

[30]  R. Phillips,et al.  Evidence for extensive denudation of the Martian highlands , 2001 .

[31]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[32]  H. McSween,et al.  Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .

[33]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[34]  H. Graber,et al.  Impact of flow distortion corrections on turbulent fluxes estimated by the inertial dissipation method during the FETCH experiment on R/V L'Atalante , 2003 .

[35]  Amitabha Ghosh,et al.  First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES , 2004, Science.

[36]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[37]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[38]  Jeffrey R. Johnson,et al.  Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .

[39]  W. Hartmann,et al.  Utilization of the THEMIS visible and infrared imaging data for crater population studies of the Meridiani Planum landing site , 2003 .

[40]  P. Christensen,et al.  Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner , 1993 .

[41]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[42]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[43]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .