Applications Of Fractals And Chaos Models In Visual Computing

Fractals and related mathematical models of chaotic phenomena have become active areas in research and applications in many diverse fields. These include weather forecasting, structural analysis, mapping, entertainment, biology, and many others. These fields appear to be a significant part of an emerging interdisciplinary science of complexity and complex systems. The uses of these models in the rapidly developing field of visual computing (i.e., the computational aspects of image sciences: image processing, analysis, and synthesis) are leading to many innovations. This paper will describe a range of activities at TASC and elsewhere illustrating significant new developments, and it describes a trend toward unification in visual computing using these techniques.

[1]  E. Lorenz The local structure of a chaotic attractor in four dimensions , 1984 .

[2]  D. Esteban,et al.  Application of quadrature mirror filters to split band voice coding schemes , 1977 .

[3]  Rys,et al.  Fractal shape of hail clouds. , 1986, Physical review letters.

[4]  J J Tribbia,et al.  Scientific basis of modern weather prediction. , 1987, Science.

[5]  N. Zabusky Grappling with Complexity , 1987 .

[6]  Clifford A. Pickover,et al.  Pattern formation and chaos in networks , 1988, CACM.

[7]  Craig Upson,et al.  Combining physical and visual simulation—creation of the planet Jupiter for the film “2010” , 1986, SIGGRAPH.

[8]  H. Woxniakowski Information-Based Complexity , 1988 .

[9]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Neal B. Abraham,et al.  Lasers and Brains: Complex Systems with Low-Dimensional Attractors , 1986 .

[11]  R. J. Stevens,et al.  Manipulation and Presentation of Multidimensional Image Data Using the Peano Scan , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  L. M. Gelberg,et al.  Supercomputing and Graphics in the Earth and Planetary Sciences , 1987, IEEE Computer Graphics and Applications.

[13]  G. Dutton,et al.  Fractal Enhancement of Cartographic Line Detail , 1981 .

[14]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1982, Commun. ACM.

[15]  B. West Physiology in Fractal Dimensions , 1990 .

[16]  D. Mark,et al.  Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology and computer mapping , 1984 .

[17]  Robert F. Brammer Three Key Trends Affecting Intelligent Image Processing , 1986, Other Conferences.

[18]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Itamar Procaccia,et al.  Universal properties of dynamically complex systems: the organization of chaos , 1988, Nature.

[20]  Procaccia,et al.  Organization of chaos. , 1987, Physical review letters.

[21]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[22]  Robert L. Devaney Fractal patterns arising in chaotic dynamical systems , 1988 .

[23]  Stephen J. Willson Computing fractal dimensions for additive cellular automata , 1987 .

[24]  Michael C. Stein Fractal Image Models And Object Detection , 1987, Other Conferences.

[25]  Warren G. Heller,et al.  Digital Image Enhancement Techniques For Nondestructive Evaluation , 1986, Other Conferences.

[26]  Edward H. Adelson,et al.  Orthogonal Pyramid Transforms For Image Coding. , 1987, Other Conferences.

[27]  Michael F. Barnsley,et al.  A better way to compress images , 1988 .

[28]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  James M. Keller,et al.  Characteristics of Natural Scenes Related to the Fractal Dimension , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Michael Mills,et al.  Fractal based image coding scheme using Peano scan , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[32]  M. Goodchild Fractals and the accuracy of geographical measures , 1980 .

[33]  David J. Heeger,et al.  Seeing structure through chaos , 1986 .

[34]  Joseph Naor,et al.  Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  B. Mandelbrot,et al.  Fractal properties of rain, and a fractal model , 1985 .

[36]  H. G. E. Hentschel,et al.  Relative diffusion in turbulent media: The fractal dimension of clouds , 1984 .

[37]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[38]  S. Lovejoy Area-Perimeter Relation for Rain and Cloud Areas , 1982, Science.

[39]  J. Yorke,et al.  Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.

[40]  Gavin S. P. Miller,et al.  The definition and rendering of terrain maps , 1986, SIGGRAPH.

[41]  M. Barnsley Fractal modelling of real world images , 1988 .

[42]  Alex Pentland Fractal Surface Models For Communication About Terrain , 1987, Other Conferences.