Structure and function of dendritic spines.

Spines are neuronal protrusions, each of which receives input typically from one excitatory synapse. They contain neurotransmitter receptors, organelles, and signaling systems essential for synaptic function and plasticity. Numerous brain disorders are associated with abnormal dendritic spines. Spine formation, plasticity, and maintenance depend on synaptic activity and can be modulated by sensory experience. Studies of compartmentalization have shown that spines serve primarily as biochemical, rather than electrical, compartments. In particular, recent work has highlighted that spines are highly specialized compartments for rapid large-amplitude Ca(2+) signals underlying the induction of synaptic plasticity.

[1]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[2]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[3]  R. Guillery,et al.  A NOTE ON THE DENDRITIC SPINE APPARATUS. , 1963, Journal of anatomy.

[4]  A. Scheibel,et al.  Loss of Dendrite Spines as an Index of Pre-Synaptic Terminal Patterns , 1966, Nature.

[5]  Received December Apical Dendritic Spines of the Visual Cortex and Light Deprivation in the Mouse , 1967 .

[6]  G R Stibitz,et al.  Distribution of the apical dendritic spines of the layer V pyramidal cells of the hamster neocortex. , 1968, Brain research.

[7]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[8]  F. Valverde,et al.  Rate and extent of recovery from dark rearing in the visual cortex of the mouse. , 1971, Brain research.

[9]  A. Globus,et al.  Effects of neonatal thyroxine and hydrocortisone administration on the development of dendritic spines in the visual cortex of rats. , 1973, Experimental neurology.

[10]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[11]  D. Purpura,et al.  Dendritic Spine "Dysgenesis" and Mental Retardation , 1974, Science.

[12]  G. Lynch,et al.  Spine Loss and Regrowth in Hippocampus following Deafferentation , 1974, Nature.

[13]  Viktor Hamburger,et al.  Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord , 1974, The Journal of comparative neurology.

[14]  Sanford L. Palay,et al.  The Purkinje Cell , 1974 .

[15]  D. Purpura,et al.  Normal and aberrant neuronal development in the cerebral cortex of human fetus and young infant. , 1975, UCLA forum in medical sciences.

[16]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[17]  M. Marín‐Padilla,et al.  Pyramidal cell abnormalities in the motor cortex of a child with Down's syndrome. A Golgi study , 1976, The Journal of comparative neurology.

[18]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[19]  E. Fifková,et al.  Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area , 1977, Journal of neurocytology.

[20]  A. Routtenberg,et al.  The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. , 1977, Tissue & cell.

[21]  S. Wise,et al.  Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex , 1979, Neuroscience.

[22]  A. Ruiz-Marcos,et al.  Severe hypothyroidism and the maturation of the rat cerebral cortex , 1979, Brain Research.

[23]  J. Lund,et al.  A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemestrina monkeys , 1979, The Journal of comparative neurology.

[24]  Stavros J. Baloyannis,et al.  Experimental modification of cerebellar development in tissue culture: X-irradiation induces granular degeneration and unattached purkinje cell dendritic spines , 1979, Neuroscience Letters.

[25]  Richard G. Coss,et al.  Changes in morphology of dendritic spines on honeybee calycal interneurons associated with cumulative nursing and foraging experiences , 1980, Brain Research.

[26]  E. Uemura,et al.  Age-related changes in prefrontal cortex of Macaca mulatta: Quantitative analysis of dendritic branching patterns , 1980, Experimental Neurology.

[27]  G Lynch,et al.  Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. , 1980, Journal of neurophysiology.

[28]  E. Uemura Age-related changes in prefrontal cortex of Macaca mulatta: Synaptic density , 1980, Experimental Neurology.

[29]  E. Fifková,et al.  Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer , 1981, Experimental Neurology.

[30]  F. Crépel,et al.  Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro. , 1981, The Journal of physiology.

[31]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[32]  A. Matus,et al.  High actin concentrations in brain dendritic spines and postsynaptic densities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Ruiz-Marcos,et al.  Thyroxine treatment and recovery of hypothyroidism-induced pyramidal cell damage , 1982, Brain Research.

[34]  E. Fifková,et al.  Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity , 1982, The Journal of cell biology.

[35]  D. Jones,et al.  Quantitative ultrastructural changes in rat cortical synapses during early-, mid- and late-adulthood , 1982, Brain Research.

[36]  G. Stoltenburg‐Didinger,et al.  Fetal alcohol syndrome and mental retardation: spine distribution of pyramidal cells in prenatal alcohol-exposed rat cerebral cortex; a Golgi study. , 1983, Brain research.

[37]  The normal and aberrant development of synaptic structures between parallel fibers and Purkinje cell dendritic spines. , 1983, Journal of neural transmission. Supplementum.

[38]  H. Berg Random Walks in Biology , 2018 .

[39]  J. Lund,et al.  Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex , 1983, The Journal of comparative neurology.

[40]  T. Poggio,et al.  A theoretical analysis of electrical properties of spines , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  W. Greenough,et al.  Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice , 1984, Brain Research.

[42]  C. Wilson,et al.  Passive cable properties of dendritic spines and spiny neurons , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  J. Machado-Salas Abnormal dendritic patterns and aberrant spine development in Bourneville's disease--a Golgi survey. , 1984, Clinical neuropathology.

[44]  M. Netsky,et al.  The Brain of the Planarian as the Ancestor of the Human Brain , 1985, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[45]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[46]  O. Steward,et al.  Polyribosomes under developing spine synapses: Growth specializations of dendrites at sites of synaptogenesis , 1985, Journal of neuroscience research.

[47]  W B Levy,et al.  Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus , 1986, The Journal of comparative neurology.

[48]  W. Levy,et al.  Changes in the numerical density of synaptic contacts with long‐term potentiation in the hippocampal dentate gyrus , 1986, The Journal of comparative neurology.

[49]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[50]  J. Wickens Electrically coupled but chemically isolated synapses: Dendritic spines and calcium in a rule for synaptic modification , 1988, Progress in Neurobiology.

[51]  R. Leapman,et al.  Activity-dependent accumulation of calcium in Purkinje cell dendritic spines. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Harvey,et al.  Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum , 1988, The Journal of comparative neurology.

[53]  W. Levy,et al.  Synaptic interface surface area increases with long-term potentiation in the hippocampal dentate gyrus , 1988, Brain Research.

[54]  O. Steward,et al.  Protein-synthetic machinery beneath postsynaptic sites on CNS neurons: association between polyribosomes and other organelles at the synaptic site , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  L. Becker,et al.  Dendrites, dementia and the down syndrome , 1989, Brain and Development.

[57]  S. Iwane,et al.  Golgi study on the homozygote (Ml/Ml) of macular mutant mouse , 1989, Brain and Development.

[58]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Mcewen,et al.  Sex differences and thyroid hormone sensitivity of hippocampal pyramidal cells , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  E. Gould,et al.  Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone , 1990, Brain Research.

[62]  C. Woolley,et al.  Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  William R. Holmes,et al.  Is the function of dendritic spines to concentrate calcium? , 1990, Brain Research.

[64]  E Gould,et al.  Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  S. Snyder,et al.  The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment , 1990, The Journal of cell biology.

[66]  Leyla deToledo-Morrell,et al.  Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities , 1991, Brain Research.

[67]  W. Brown,et al.  Analysis of neocortex in three males with the fragile X syndrome. , 1991, American journal of medical genetics.

[68]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[69]  Ben A. Oostra,et al.  Absence of expression of the FMR-1 gene in fragile X syndrome , 1991, Cell.

[70]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[71]  M. Cynader,et al.  Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). , 1992, Cerebral cortex.

[72]  E. Fifkova´,et al.  Inhibitory contacts on dendritic spines of the dentate fascia , 1992, Brain Research.

[73]  E. Masliah,et al.  Cortical dendritic pathology in human immunodeficiency virus encephalitis. , 1992, Laboratory investigation; a journal of technical methods and pathology.

[74]  B. Mcewen,et al.  Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat [published erratum appears in J Neurosci 1992 Oct;12(10):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[76]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[77]  K M Harris,et al.  Three‐dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus , 1992, The Journal of comparative neurology.

[78]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  D. Tank,et al.  Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[81]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[82]  B. Oostra,et al.  Characterization and localization of the FMR-1 gene product associated with fragile X syndrome , 1993, Nature.

[83]  P. Somogyi,et al.  Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: a quantitative immunoelectron microscopic analysis. , 1993, Journal fur Hirnforschung.

[84]  B H Gähwiler,et al.  Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[85]  N. Levine,et al.  Down's syndrome and Alzheimer's disease. , 1993, Journal.

[86]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[87]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  J. Mandel,et al.  The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation , 1993, Nature Genetics.

[89]  G. Ojemann,et al.  Quantitative Dendritic and Spine Analyses of Speech Cortices: A Case Study , 1993, Brain and Language.

[90]  P Andersen,et al.  An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Muller,et al.  A new cytochemical method for the ultrastructural localization of calcium in the central nervous system , 1994, Journal of Neuroscience Methods.

[92]  N. Slater,et al.  Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[94]  I. Ferrer,et al.  The Purkinje cell in olivopontocerebellar atrophy. A Golgi and immunocytochemical study , 1994, Neuropathology and applied neurobiology.

[95]  Boris Barbour,et al.  Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells , 1994, Neuron.

[96]  B. Mcewen,et al.  Estradiol regulates hippocampal dendritic spine density via an N-methyl- D-aspartate receptor-dependent mechanism , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  D. O'Dowd,et al.  Activity-dependent regulation of dendritic spine density on cortical pyramidal neurons in organotypic slice cultures. , 1994, Journal of neurobiology.

[98]  J V Haxby,et al.  Adult fragile X syndrome: neuropsychology, brain anatomy, and metabolism. , 1995, American journal of medical genetics.

[99]  W. N. Ross,et al.  Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. , 1995, Journal of neurophysiology.

[100]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[102]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[103]  M. Segal Dendritic spines for neuroprotection: a hypothesis , 1995, Trends in Neurosciences.

[104]  D. Rusakov,et al.  Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[106]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[107]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[109]  M. Segal,et al.  Morphological plasticity in dendritic spines of cultured hippocampal neurons , 1996, Neuroscience.

[110]  C. Woolley,et al.  Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat , 1996, The Journal of comparative neurology.

[111]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[112]  Kristina D. Micheva,et al.  Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry , 1996, The Journal of comparative neurology.

[113]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[114]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[115]  D. Muller,et al.  Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[116]  M. Segal,et al.  Regulation of Dendritic Spine Density in Cultured Rat Hippocampal Neurons by Steroid Hormones , 1996, The Journal of Neuroscience.

[117]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[118]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[119]  M. Frotscher,et al.  Spine loss in experimental epilepsy: Quantitative light and electron microscopic analysis of intracellularly stained CA3 pyramidal cells in hippocampal slice cultures , 1996, Neuroscience.

[120]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[121]  M. Trommald,et al.  Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs , 1997, The Journal of comparative neurology.

[122]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[123]  I. Weiler,et al.  Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[124]  B. Jacobs,et al.  Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative golgi study , 1997, The Journal of comparative neurology.

[125]  S. Hersch,et al.  Fragile X Mental Retardation Protein: Nucleocytoplasmic Shuttling and Association with Somatodendritic Ribosomes , 1997, The Journal of Neuroscience.

[126]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[127]  J. Morrison,et al.  Life and death of neurons in the aging brain. , 1997, Science.

[128]  A. Verkman,et al.  Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. , 1997, Biophysical journal.

[129]  T. Bliss,et al.  Ultrastructural synaptic correlates of spatial learning in rat hippocampus , 1997, Neuroscience.

[130]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[131]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[132]  E. White,et al.  A survey of morphogenesis during the early postnatal period in PMBSF barrels of mouse SmI cortex with emphasis on barrel D4. , 1997, Somatosensory & motor research.

[133]  J Hámori,et al.  Distribution of metabotropic glutamate receptor type 1a in Purkinje cell dendritic spines is independent of the presence of presynaptic parallel fibers , 1997, Journal of neuroscience research.

[134]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[135]  P. Goldman-Rakic,et al.  Dual role of substance P/GABA axons in cortical neurotransmission: synaptic triads on pyramidal cell spines and basket-like innervation of layer II-III calbindin interneurons in primate prefrontal cortex. , 1997, Cerebral cortex.

[136]  I. Weiler,et al.  Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Coupling between dendritic spines and shafts in cerebellar Purkinje cells , 1997 .

[138]  A. M. Insausti,et al.  Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of down syndrome , 1998, Neuroscience Letters.

[139]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[140]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[141]  C. Gunter,et al.  Purified Recombinant Fmrp Exhibits Selective RNA Binding as an Intrinsic Property of the Fragile X Mental Retardation Protein* , 1998, The Journal of Biological Chemistry.

[142]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[143]  S. Hirsch,et al.  Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia , 1998, Journal of neurology, neurosurgery, and psychiatry.

[144]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[145]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[146]  M. Segal,et al.  Estradiol Increases Dendritic Spine Density by Reducing GABA Neurotransmission in Hippocampal Neurons , 1998, The Journal of Neuroscience.

[147]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[148]  M. Segal,et al.  Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[150]  S. Sesack,et al.  Callosal terminals in the rat prefrontal cortex: Synaptic targets and association with GABA‐immunoreactive structures , 1998, Synapse.

[151]  P. H. Schiller,et al.  The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements , 1998, Nature Neuroscience.

[152]  S. Halpain,et al.  Regulation of F-Actin Stability in Dendritic Spines by Glutamate Receptors and Calcineurin , 1998, The Journal of Neuroscience.

[153]  L. Descarries,et al.  Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat , 1998, The Journal of comparative neurology.

[154]  A. Peters,et al.  The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey. , 1998, Cerebral cortex.

[155]  K M Harris,et al.  Stability in Synapse Number and Size at 2 Hr after Long-Term Potentiation in Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[156]  C. Regan,et al.  Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6hour post-training period of consolidation , 1998, Neuroscience.

[157]  B. Sakmann,et al.  Adjacent asparagines in the NR2‐subunit of the NMDA receptor channel control the voltage‐dependent block by extracellular Mg2+ , 1998, The Journal of physiology.

[158]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[159]  M. Segal,et al.  Bidirectional regulation of dendritic spine dimensions by glutamate receptors. , 1999, Neuroreport.

[160]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[161]  K. Svoboda,et al.  Synaptic [Ca2+] Intracellular Stores Spill Their Guts , 1999, Neuron.

[162]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[163]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[164]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[165]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[166]  M Segal,et al.  Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[168]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[169]  S. Kaech,et al.  Volatile anesthetics block actin-based motility in dendritic spines. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[170]  R. Gutiérrez,et al.  Synaptic reorganization in explanted cultures of rat hippocampus , 1999, Brain Research.

[171]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[172]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[173]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[174]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[175]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[176]  Kristen M Harris,et al.  Structure, development, and plasticity of dendritic spines , 1999, Current Opinion in Neurobiology.

[177]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[178]  L. C. Katz,et al.  Destabilization of Cortical Dendrites and Spines by BDNF , 1999, Neuron.

[179]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[180]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[181]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[182]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[183]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[184]  Y. Geinisman,et al.  Structural synaptic modifications associated with hippocampal LTP and behavioral learning. , 2000, Cerebral cortex.

[185]  D. Davies,et al.  Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice , 2000, Brain Research.

[186]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[187]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[188]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[189]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[190]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[191]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[192]  R. Yuste,et al.  Regulation of Spine Calcium Dynamics by Rapid Spine Motility Materials and Methods , 2022 .

[193]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[194]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[195]  K. J. Murphy,et al.  Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent , 2000, Neuroscience.

[196]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[197]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[198]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[199]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[200]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[201]  M. Segal,et al.  Progesterone Prevents Estradiol-Induced Dendritic Spine Formation in Cultured Hippocampal Neurons , 2000, Neuroendocrinology.

[202]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[203]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[204]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[205]  A Konnerth,et al.  NMDA Receptor-Mediated Na+ Signals in Spines and Dendrites , 2001, The Journal of Neuroscience.

[206]  C. Woolley,et al.  Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: A serial electron-microscopic study , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[207]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[208]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[209]  M. Jeffrey,et al.  Early loss of dendritic spines in murine scrapie revealed by confocal analysis , 2001, Neuroreport.

[210]  Karel Svoboda,et al.  Abnormal Development of Dendritic Spines inFMR1 Knock-Out Mice , 2001, The Journal of Neuroscience.

[211]  E. Barkai,et al.  Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex , 2001, The European journal of neuroscience.

[212]  I. Weiler,et al.  Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. , 2001, American journal of medical genetics.

[213]  Miri Goldin,et al.  Functional Plasticity Triggers Formation and Pruning of Dendritic Spines in Cultured Hippocampal Networks , 2001, The Journal of Neuroscience.

[214]  M E Martone,et al.  Selective localization of high concentrations of F‐actin in subpopulations of dendritic spines in rat central nervous system: A three‐dimensional electron microscopic study , 2001, The Journal of comparative neurology.

[215]  H. M. Dembitzer,et al.  Development of Purkinje cell somatic spines in the weaver mouse , 1977, Acta Neuropathologica.

[216]  P. Mehraein,et al.  Spine distribution along the apical dendrites of the pyramidal neurons in Down's syndrome , 2004, Acta Neuropathologica.

[217]  J. Špaček Three-dimensional analysis of dendritic spines , 2004, Anatomy and Embryology.

[218]  J. Špaček,et al.  Three-dimensional analysis of dendritic spines , 2004, Anatomy and Embryology.

[219]  H. Wiśniewski,et al.  Adult fragile X syndrome , 1985, Acta Neuropathologica.

[220]  M. Paula-Barbosa,et al.  Dendritic abnormalities in patients with subacute sclerosing panencephalitis (SSPE) , 2004, Acta Neuropathologica.

[221]  William Holmes,et al.  Models of Calmodulin Trapping and CaM Kinase II Activation in a Dendritic Spine , 2004, Journal of Computational Neuroscience.

[222]  J. Špaček Relationships between synaptic junctions, puncta adhaerentia and the spine apparatus at neocortical axo-spinous synapses , 2004, Anatomy and Embryology.

[223]  N. Strausfeld,et al.  A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects , 1982, Cell and Tissue Research.

[224]  L. Westrum,et al.  Microtubules, dendritic spines and spine apparatuses , 2004, Cell and Tissue Research.