Hydromechanical coupling in geologic processes

Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists.Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust.Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.RésuméLa croûte poreuse de la Terre et les fluides associés sont intimement liés dans leurs effets mécaniques réciproques. Ce papier présente une analyse d'un tel couplage "hydromécanique" et examine l'état actuel des connaissances de son rôle dans les processus géologiques. La théorie de l'hydromécanique et des modèles rhéologiques pour la déformation géologique est exposée de façon à introduire différentes approches analytiques dans le contexte considéré et à fournir aux non spécialistes une introduction à ce vaste sujet.Les effets du couplage hydromécanique sont ubiquistes en géologie; ils peuvent être locaux et de courte durée ou régionaux et de longue durée. Des phénomènes tels que le dépôt et l'érosion, la tectonique, la séismicité, les marées terrestres et la pression barométrique produisent des contraintes qui tendent à modifier la pression du fluide. Les perturbations de pression résultantes peuvent être considérables, et de nombreuses pressions dites anormales paraissent avoir été créées de cette façon. Les effets de la pression des fluides sur les mécanismes crustaux sont également profonds. Les milieux géologiques se déforment et faiblissent considérablement en réponse à la contrainte efficace, c'est-à-dire la contrainte totale moins la pression du fluide. Il en résulte que les pressions de fluide contrôlent la compaction, la décompaction et d'autres types de déformations, telles que l'ouverture des fissures, la rupture et le glissement par cisaillement, y compris les évènements qui provoquent des séismes. En contrôlant la déformation et la rupture, les pressions de fluide régulent également les contraintes dans la croûte supérieure.Les progrès réalisés au cours des 80 dernières années, dont les théories de la consolidation, de l'écoulement souterrain transitoire et de la poro-élasticité, ont été synthétisées dans un ensemble conceptuel cohérent qui permet de comprendre et de décrire le couplage hydromécanique. Le couplage complet en 2 ou 3 dimensions est décrit à partir d'équations du bilan de la déformation associées à une équation de conservation de la masse pour l'écoulement des fluides. Des analyses complètement couplées permettent de tester des hypothèses et de développer des modèles conceptuels. Cependant, l'application rigoureuse du couplage complet est souvent difficile parce que (1) le comportement rhéologique du milieu géologique est complexe et mal connu, et (2) on connaît mal les conditions d'architecture, de propriétés mécaniques et aux limites, ainsi que l'histoire de la déformation de la plupart des systèmes géologiques. L'essentiel de ce que l'on connaît sur les processus hydromécaniques dans les systèmes géologiques provient d'analyses plus simples qui ignorent certains aspects du couplage solide-fluide. Les simplifications introduisent une erreur, mais des analyses plus complètes ne sont habituellement pas justifiées. Les analyses hydromécaniques doivent donc être interprétées de façon judicieuse, avec une appréciation de leurs limites. Des approches innovantes de modélisation hydromécanique et d'obtention de données critiques peuvent contourner quelques limitations courantes et fournir des réponses aux questions en suspens concernant les processus crustaux et le comportement du fluide dans la croûte.ResumenLa corteza porosa de la Tierra y sus fluidos interiores están íntimamente ligados por efectos mecánicos mutuos. Este artículo repasa este acoplamiento "hidromecánico" y examina el conocimiento actual de su papel en los procesos geológicos. Se incluye un bosquejo de la teoría de la hidromecánica y de los modelos reológicos de deformación geológica con el fin de contextualizar los diversos enfoques analíticos y de proporcionar una introducción a este extenso campo para los no especialistas.Los efectos del acoplamiento hidromecánico son ubicuos en geología; pueden ser locales y breves o regionales y de larga duración. Fenómenos como la deposición y erosión, movimientos tectónicos y sísmicos, mareas terrestres y la carga barométrica producen deformaciones que tienden a alterar las presiones de los fluidos. Las perturbaciones resultantes en la presión pueden ser enormes, y muchas de las denominadas presiones "anómalas" parecen haber sido originadas de esta forma. Los efectos de la presión del fluido en la mecánica de la corteza terrestre son también profundos. Los medios geológicos se deforman y fallan ampliamente en respuesta a la tensión efectiva, equivalente a la tensión total menos la presión del fluido. Como consecuencia, las presiones del fluido controlan la compactación, descompactación y otros tipos de deformación, así como el diaclasado, las cizallas y las cizallas por deslizamiento, incluyendo eventos que generan terremotos. Controlando la deformación y el fallo, las presiones del fluido también regulan los estados tensionales en la corteza superior.Se ha sintetizado los avances de los últimos 80 años, incluyendo las teorías de consolidación, flujo transitorio de aguas subterráneas y poroelasticidad en un marco conceptual razonablemente completo con el fin de comprender y describir el acoplamiento hidromecánico. Se describe el acoplamiento total en dos o tres dimensiones mediante ecuaciones de balance de fuerzas para la deformación acopladas con una ecuación de conservación de masa para el flujo del fluido. Los análisis completamente acoplados permiten verificar hipótesis y desarrollar modelos conceptuales. Sin embargo, la aplicación rigurosa de un acoplamiento total es a menudo difícil porque (1) el comportamiento reológico de los medios geológicos es complejo y apenas entendido, y (2) la arquitectura, propiedades mecánicas y condiciones de contorno, y la historia de deformación de la mayoría de sistemas geológicos, no son bien conocidas. Mucho de lo que se sabe de los procesos hidromecánicos en sistemas geológicos procede de análisis más sencillos que ignoran ciertos aspectos del acoplamiento sólido-fluido. Las simplificaciones introducen errores, pero habitualmente no se garantiza que haya análisis más completos. Así, los análisis hidromecánicos deberían ser interpretados juiciosamente, siendo conscientes de sus limitaciones. La adopción de enfoques innovadores de modelación hidromecánica y la obtención de datos críticos podrían superar las limitaciones actuales y proporcionar respuestas a las cuestiones no aclaradas sobre los procesos en la corteza terrestre y sobre el comportamiento de los fluidos en su interior.

[1]  D. Turcotte,et al.  Stresses induced by the addition or removal of overburden and associated thermal effects , 1976 .

[2]  F. Schneider,et al.  Mechanical and chemical compaction model for sedimentary basin simulators , 1996 .

[3]  P. Williams Book Review: Experimental rock deformation. The Brittle Field. M.S. Paterson, Springer, Berlin-Heidelberg, 1978, 254 pp, DM 48.00, approx. US $ 24.00 , 1980 .

[4]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[5]  Terry Engelder,et al.  Stress Regimes in the Lithosphere , 1992 .

[6]  M. Biot Theory of finite deformations of porous solids , 1972 .

[7]  Devin L. Galloway,et al.  Land subsidence in the United States , 1999 .

[8]  T. Narasimhan,et al.  Hydrogeologic constraints on heat flow along the San Andreas fault: a testing of hypotheses , 1989 .

[9]  Chin-Fu Tsang,et al.  Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach , 1984 .

[10]  R. Chapman,et al.  Abnormal formation pressures , 1977 .

[11]  L. Cathles,et al.  Expulsion of abnormally pressured fluids along faults , 1996 .

[12]  P. Bradley,et al.  Role of microbial processes in linking sandstone diagenesis with organic-rich clays , 1992 .

[13]  J. Geertsma,et al.  Problems of Rock Mechanics In Petroleum Production Engineering , 1966 .

[14]  Yaolin Shi,et al.  Pore pressure generation in sedimentary basins: Overloading versus aquathermal , 1986 .

[15]  A. Schofield,et al.  Yielding of Clays in States Wetter than Critical , 1963 .

[16]  John F. Cassidy,et al.  An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients , 2001 .

[17]  Craig M. Bethke,et al.  Modeling subsurface flow in sedimentary basins , 1989 .

[18]  C. Neuzil Groundwater Flow in Low‐Permeability Environments , 1986 .

[19]  William W Rubey,et al.  ROLE OF FLUID PRESSURE IN MECHANICS OF OVERTHRUST FAULTING I. MECHANICS OF FLUID-FILLED POROUS SOLIDS AND ITS APPLICATION TO OVERTHRUST FAULTING , 1959 .

[20]  M. King Hubbert,et al.  Mechanics of Hydraulic Fracturing , 1972 .

[21]  Herman H. Rieke,et al.  Compaction of Argillaceous Sediments , 1974 .

[22]  G. Vasseur,et al.  Modelling of pore pressure evolution associated with sedimentation and uplift in sedimentary basins , 1995 .

[23]  Eduardo F. D'Azevedo,et al.  HBGC123D: a high-performance computer model of coupled hydrogeological and biogeochemical processes , 2001 .

[24]  D. Norton,et al.  Transport phenomena in hydrothermal systems; cooling plutons , 1977 .

[25]  J. Cartwright,et al.  Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems , 1996 .

[26]  E. Roeloffs Hydrologic precursors to earthquakes: A review , 1988 .

[27]  G. Grün,et al.  Porous rock deformation and fluid flow — numerical FE-simulation of the coupled system , 1989 .

[28]  Thomas F. Corbet,et al.  Linear and nonlinear solutions for one‐dimensional compaction flow in sedimentary basins , 1988 .

[29]  E. M. Anderson XVII.—The Dynamics of Sheet Intrusion , 1939 .

[30]  Irving H. Shames Mechanics of Deformable Solids , 1964 .

[31]  D. S. Gordon,et al.  Two-Dimensional Modeling of Groundwater Flow in an Evolving Deltaic Environment , 1999 .

[32]  C. E. Jacob On the flow of water in an elastic artesian aquifer , 1940 .

[33]  Yaolin Shi,et al.  Generation of high pore pressures in accretionary prisms: Inferences from the Barbados Subduction Complex , 1988 .

[34]  B. Hart,et al.  Porosity and pressure: Role of compaction disequilibrium in the development of geopressures in a Gulf Coast Pleistocene basin , 1995 .

[35]  C. Scholz,et al.  Dilatancy in the fracture of crystalline rocks , 1966 .

[36]  M. Biot THEORY OF DEFORMATION OF A POROUS VISCOELASTIC ANISOTROPIC SOLID , 1956 .

[37]  L. Cathles An analysis of the cooling of intrusives by ground-water convection which includes boiling , 1977 .

[38]  M. E. Mackay,et al.  Velocity and inferred porosity model of the Oregon accretionary prism from multichannel seismic reflection data: Implications on sediment dewatering and overpressure , 1994 .

[39]  R. Martin,et al.  The role of fluids in crustal processes , 1992 .

[40]  D. F. McTigue,et al.  Thermoelastic response of fluid‐saturated porous rock , 1986 .

[41]  L. Šuklje,et al.  Rheologic aspects of soil mechanics , 1969 .

[42]  Duncan Carr Agnew,et al.  The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading , 1989 .

[43]  Nick Barton,et al.  Joint conductivity variation due to normal and shear deformation , 1991 .

[44]  P. Flemings,et al.  Overpressure and fluid flow in the new jersey continental slope: implications for slope failure and cold seeps , 2000, Science.

[45]  Anomalous pressure generation within the Alberta Basin: implications for oil charge to the Viking Formation , 2000 .

[46]  D. Secor Role of fluid pressure in jointing , 1965 .

[47]  D. Karig In the Framework of Deformation in the Nankai Trough , 1986 .

[48]  Hans-Joachim Kümpel,et al.  Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions , 1999 .

[49]  S. Rojstaczer,et al.  Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes , 1995, Nature.

[50]  Robert L. Wesson,et al.  Earthquake hazard associated with deep well injection , 1990 .

[51]  B. Bekins,et al.  Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex , 2001 .

[52]  J. Skopp,et al.  Physical and Chemical Hydrogeology, 2nd edition , 1999 .

[53]  Gary P. Curtis,et al.  Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors , 2003 .

[54]  G. Garven A hydrogeologic model for the formation of the giant oil sands deposits of the Western Canada sedimentary basin , 1989 .

[55]  C. Neuzil How permeable are clays and shales , 1994 .

[56]  Chris Marone,et al.  Frictional behavior and constitutive modeling of simulated fault gouge , 1990 .

[57]  Yves Guéguen,et al.  Percolation networks and fluid transport in the crust , 1991 .

[58]  P. Domenico,et al.  Fluid pressures in deforming porous rocks , 1989 .

[59]  E. Roeloffs,et al.  Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California , 1997, Bulletin of the Seismological Society of America.

[60]  C. Neuzil,et al.  Groundwater in Geologic Processes , 1998 .

[61]  J. Ramsay,et al.  Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks , 1982 .

[62]  W. J. Harrison,et al.  Paleohydrology of the Gulf of Mexico basin , 1991 .

[63]  C. Bethke,et al.  Disequilibrium fluid pressures and groundwater flow in the western Canada sedimentary basin , 1992 .

[64]  Brian McPherson,et al.  Overpressures in the Uinta Basin, Utah: Analysis using a three‐dimensional basin evolution model , 2001 .

[65]  J. Bredehoeft,et al.  Recent movement on the Garlock Fault as suggested by water level fluctuations in a well in Fremont Valley, California , 1985 .

[66]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[67]  Herbert F. Wang Effects of deviatoric stress on undrained pore pressure response to fault slip , 1997 .

[68]  Robert L. Wesson,et al.  Earthquake hazard associated with deep well injection: a report to the U.S. Environmental Protection Agency , 1990 .

[69]  V. Ranganathan Basin dewatering near salt domes and formation of brine plumes , 1992 .

[70]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[71]  J. Gale,et al.  Theory of earth tide and barometric effects in porous formations with compressible grains , 1983 .

[72]  S. Ge,et al.  A theoretical model for thrust-induced deep groundwater expulsion with application to the Canadian Rocky Mountains , 1994 .

[73]  P. Pattillo,et al.  A MATERIAL MODEL FOR INELASTIC ROCK DEFORMATION WITH SPATIAL VARIATION OF PORE PRESSURE , 1983 .

[74]  O. E. Meinzer Compressibility and elasticity of artesian aquifers , 1928 .

[75]  J. D. Rimstidt,et al.  A numerical compaction model of overpressuring in shales , 1985 .

[76]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[77]  A. Fisher,et al.  Geochemical and geothermal evidence for fluid migration in the Barbados Accretionary Prism (ODP leg 110) , 1991 .

[78]  Hans-Peter Harjes,et al.  Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany , 1997 .

[79]  F. Press Displacements, strains, and tilts at teleseismic distances , 1965 .

[80]  M Muskat,et al.  THE FLOW OF HOMOGENEOUS FLUIDS THROUGH POROUS MEDIA: ANALOGIES WITH OTHER PHYSICAL PROBLEMS , 1937 .

[81]  P. Segall,et al.  Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France , 1994 .

[82]  J. Bredehoeft,et al.  An Experiment in Earthquake Control at Rangely, Colorado , 1976, Science.

[83]  Paul Segall,et al.  Induced stresses due to fluid extraction from axisymmetric reservoirs , 1992 .

[84]  J. Rice,et al.  Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault , 1995 .

[85]  M. Hubbert,et al.  ROLE OF FLUID PRESSURE IN MECHANICS OF OVERTHRUST FAULTING A REPLY , 1959 .

[86]  P. Domenico,et al.  Thermal expansion of fluids and fracture initiation in compacting sediments: Summary , 1979 .

[87]  Robert L. Schiffman,et al.  An Analysis of Consolidation Theories , 1969 .

[88]  J. Rice,et al.  Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions , 2002 .

[89]  J. Bredehoeft,et al.  Ground water and fault strength , 1988 .

[90]  G. van der Kamp,et al.  Monitoring of total soil moisture on a scale of hectares using groundwater piezometers , 1997 .

[91]  P. Hsieh,et al.  Determination of aquifer transmissivity from Earth tide analysis , 1987 .

[92]  Subsurface Fluid Pressure Profile, Nagaoka Plain, Japan , 1968 .

[93]  H. Wakita,et al.  In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan , 2000 .

[94]  R. Sibson,et al.  Tectonic controls on maximum sustainable overpressure: fluid redistribution from stress transitions , 2000 .

[95]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[96]  H. Kümpel Poroelasticity: parameters reviewed , 1991 .

[97]  M. D. Zoback,et al.  INTRODUCTION TO SPECIAL SECTION OF THE CAJON PASS SCIENTIFIC DRILLING PROJECT , 1992 .

[98]  J. Bredehoeft,et al.  Simulations of the Origin of Fluid Pressure, Fracture Generation, and the Movement of Fluids in the Uinta Basin, Utah , 1994 .

[99]  Maurice A. Biot,et al.  Nonlinear and semilinear rheology of porous solids , 1973 .

[100]  E. Roeloffs Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes , 1998 .

[101]  C. Renshaw,et al.  Propagation velocity of a natural hydraulic fracture in a poroelastic medium , 1994 .

[102]  C. Neuzil Low Fluid Pressure Within the Pierre Shale' A Transient Response to Erosion , 1993 .

[103]  D. Karig,et al.  High‐stress consolidation experiments and their geologic implications , 1992 .

[104]  J. Connolly,et al.  Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins , 2000 .

[105]  Demian M. Saffer,et al.  Hydrologic controls on the morphology and mechanics of accretionary wedges , 2002 .

[106]  S. Ge,et al.  Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma Foreland Basin , 1992 .

[107]  Thomas Dewers,et al.  Nonlinear dynamical aspects of deep basin hydrology; fluid compartment formation and episodic fluid release , 1994 .

[108]  S. Barbour,et al.  Osmotic Flow and Volume Change in Clay Soils , 1986 .

[109]  G. Garven,et al.  Hydrodynamics and overpressure mechanisms in the Sacramento basin, California , 1999 .

[110]  David D. Pollard,et al.  Numerical simulation of fracture set formation: A fracture mechanics model consistent with experimental observations , 1994 .

[111]  G. Kruseman,et al.  Analysis and Evaluation of Pumping Test Data , 1983 .

[112]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[113]  R. Gordon,et al.  Current plate motions across the Red Sea , 1998 .

[114]  P. A. Domenico,et al.  Characterization of drained and undrained response of thermally loaded repository rocks , 1982 .

[115]  J. Sherwood,et al.  Biot poroelasticity of a chemically active shale , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[116]  Edward Kavazanjian,et al.  A constitutive model for the stress–strain–time behaviour of ‘wet’ clays , 1985 .

[117]  S. Ward On the consistency of earthquake moment release and space geodetic strain rates: Europe , 1998 .

[118]  G. Vasseur,et al.  Geopressuring Mechanism of Organic Matter Cracking: Numerical Modeling , 1996 .

[119]  Charles L. Angevine,et al.  Porosity reduction by pressure solution: A theoretical model for quartz arenites , 1983 .

[120]  R. Wesson Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction , 1981 .

[121]  M. Person,et al.  The role of basin-scale transgression and sediment compaction in stratiform copper mineralization: implications from White Pine, Michigan, USA , 2000 .

[122]  P. Ortoleva,et al.  Genesis and dynamics of basin compartments and seals , 1995 .

[123]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[124]  R. E. Gibson The progress of consolidation in a clay layer increasing in thickness with time , 1958 .

[125]  J. Bredehoeft,et al.  On the Maintenance of Anomalous Fluid Pressures: I. Thick Sedimentary Sequences , 1968 .

[126]  Paul Segall,et al.  Earthquakes triggered by fluid extraction , 1989 .

[127]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[128]  N. Goulty,et al.  Pore Pressure Estimation from Mudrock Porosities in Tertiary Basins, Southeast Asia , 1999 .

[129]  J. G. Williams,et al.  A Reservoir Analysis of the Denver Earthquakes: A Case of Induced Seismicity (Paper 80B 1095) , 1981 .

[130]  E. Screaton,et al.  Permeabilities, fluid pressures, and flow rates in the Barbados Ridge Complex , 1990 .

[131]  C. Ayora,et al.  Fluid pressure, flow velocities and transport processes in a consolidating sedimentary column with transient hydraulic properties , 2000 .

[132]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[133]  J R Booker,et al.  Aftershocks Caused by Pore Fluid Flow? , 1972, Science.

[134]  A. Poliakov,et al.  Elastoplastic deformation of porous media applied to the modelling of compaction at basin scale , 1998 .

[135]  C. V. Theis The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground‐water storage , 1935 .

[136]  E. Roeloffs Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena , 1996 .

[137]  P. Bennett,et al.  Microbial control of mineral–groundwater equilibria:Macroscale to microscale , 2000 .

[138]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[139]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[140]  K. Hudnut,et al.  Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence , 1989 .

[141]  G. Garven,et al.  Paleohydrogeology of the San Joaquin basin, California , 1999 .

[142]  William Prager,et al.  Theory of Thermal Stresses , 1960 .

[143]  G. Westbrook,et al.  Seismic modeling of the decollement zone at the base of the Barbados Ridge Accretionary Complex , 1991 .

[144]  Jack Oliver,et al.  Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena , 1986 .

[145]  Bernhard A. Schrefler,et al.  The Finite Element Method in the Deformation and Consolidation of Porous Media , 1987 .

[146]  L. F. Athy Density, Porosity, and Compaction of Sedimentary Rocks , 1930 .

[147]  A. Skempton THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .

[148]  Amos Nur,et al.  An exact effective stress law for elastic deformation of rock with fluids , 1971 .

[149]  C. Renshaw Influence of subcritical fracture growth on the connectivity of fracture networks , 1996 .

[150]  Robert W. Zimmerman,et al.  Coupling in poroelasticity and thermoelasticity , 2000 .

[151]  C. Neuzil Abnormal pressures as hydrodynamic phenomena , 1995 .

[152]  M. Hubbert,et al.  ROLE OF FLUID PRESSURE IN MECHANICS OF OVERTHRUST FAULTING II. OVERTHRUST BELT IN GEOSYNCLINAL AREA OF WESTERN WYOMING IN LIGHT OF FLUID-PRESSURE HYPOTHESIS , 1959 .

[153]  F. A. Berry High Fluid Potentials in California Coast Ranges and Their Tectonic Significance , 1973 .

[154]  J. Tóth,et al.  Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin , 2001 .

[155]  P. Blümling,et al.  Evaluation of hydraulic underpressures at Wellenberg, Switzerland , 1993 .

[156]  P. Domenico,et al.  Physical and chemical hydrogeology , 1990 .

[157]  M. Zoback,et al.  Post glacial lithospheric flexure and induced stresses and pore pressure changes in the northern North Sea , 2000 .

[158]  A. M. Britto,et al.  Critical State Soil Mechanics via Finite Elements , 1987 .

[159]  Giuseppe Gambolati Second‐order theory of flow in three‐dimensional deforming media , 1974 .

[160]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[161]  Rod F. Hotz,et al.  Studies in abnormal pressures , 1994 .

[162]  L. Jing,et al.  Thermohydromechanics of partially saturated geological media : governing equations and formulation of four finite element models , 2001 .

[163]  A. Revil Pervasive pressure‐solution transfer: A poro‐visco‐plastic model , 1999 .