A carbon nanotubes assisted strategy for insulin detection and insulin proteolysis assay.

[1]  B. Hansen,et al.  Relationship of skeletal muscle glucose 6-phosphate to glucose disposal rate and glycogen synthase activity in insulin-resistant and non-insulin-dependent diabetic rhesus monkeys , 1994, Diabetologia.

[2]  A. Salimi,et al.  Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. , 2008, Biosensors & bioelectronics.

[3]  Haojie Zhou,et al.  Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications , 2008 .

[4]  Pengyuan Yang,et al.  Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. , 2008, Analytica chimica acta.

[5]  R. Yu,et al.  Poly-L-lysine/hydroxyapatite/carbon nanotube hybrid nanocomposite applied for piezoelectric immunoassay of carbohydrate antigen 19-9. , 2008, The Analyst.

[6]  K. Geckeler,et al.  Proteins and carbon nanotubes: close encounter in water. , 2007, Small.

[7]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[8]  Joseph Wang,et al.  Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. , 2007, Analytica chimica acta.

[9]  A. Atala,et al.  Carbon nanotube applications for tissue engineering. , 2007, Biomaterials.

[10]  A. Salimi,et al.  Amperometric detection of insulin at renewable sol-gel derived carbon ceramic electrode modified with nickel powder and potassium octacyanomolybdate(IV). , 2006, Biosensors & bioelectronics.

[11]  K. Geckeler,et al.  pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. , 2006, Small.

[12]  Maogen Zhang,et al.  Insulin oxidation and determination at carbon electrodes. , 2005, Analytical chemistry.

[13]  P. He,et al.  Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes , 2005 .

[14]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[15]  D. Porte,et al.  Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. , 2005, Diabetes.

[16]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[17]  Ravi S Kane,et al.  Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[18]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Jay S Skyler,et al.  Diabetes mellitus: pathogenesis and treatment strategies. , 2004, Journal of medicinal chemistry.

[20]  Joseph Wang,et al.  Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes , 2004 .

[21]  E. Gulve,et al.  Chemistry and biochemistry of type 2 diabetes. , 2004, Chemical reviews.

[22]  Zafar Iqbal,et al.  Single-walled Carbon Nanotubes Are a New Class of Ion Channel Blockers* , 2003, Journal of Biological Chemistry.

[23]  L. Nagahara,et al.  In situ detection of cytochrome c adsorption with single walled carbon nanotube device , 2003 .

[24]  A. Salimi,et al.  Sol–gel derived carbon ceramic composite electrode containing a ruthenium complex for amperometric detection of insulin at physiological pH , 2003 .

[25]  F. Wei,et al.  The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor , 2002 .

[26]  K. Imai,et al.  Determination of insulin in a single islet of Langerhans by high-performance liquid chromatography with fluorescence detection. , 2002, Analytical chemistry.

[27]  L. Cheng,et al.  Carbon electrodes modified with ruthenium metallodendrimer multilayers for the mediated oxidation of methionine and insulin at physiological pH. , 2001, Analytical chemistry.

[28]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[29]  N. C. Price,et al.  The use of circular dichroism in the investigation of protein structure and function. , 2000, Current protein & peptide science.

[30]  W. Gorski,et al.  Iridium-based electrocatalytic systems for the determination of insulin. , 2000, Analytical chemistry.

[31]  P. Clark,et al.  Assays for Insulin, Proinsulin(S) and C-Peptide , 1999, Annals of clinical biochemistry.

[32]  K. Rose,et al.  Development of an Isotope Dilution Assay for Precise Determination of Insulin, C-peptide, and Proinsulin Levels in Non-diabetic and Type II Diabetic Individuals with Comparison to Immunoassay* , 1997, The Journal of Biological Chemistry.

[33]  R. Kennedy,et al.  Ruthenium catalyst for amperometric determination of insulin at physiological pH , 1997 .

[34]  T. Ohkubo High performance liquid chromatographic analysis of polypeptide hormones in transplanted rat islets. , 1994, Biomedical chromatography : BMC.

[35]  R. Kennedy,et al.  Amperometric monitoring of chemical secretions from individual pancreatic beta-cells. , 1993, Analytical chemistry.

[36]  J A Cox,et al.  Flow injection amperometric determination of insulin based upon its oxidation at a modified electrode. , 1989, Analytical chemistry.

[37]  S. Berson,et al.  Assay of Plasma Insulin in Human Subjects by Immunological Methods , 1959, Nature.