Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex

On the basis of extracellular recordings in marmoset monkeys, we report on the organisation of the middle temporal area (MT) and the surrounding middle temporal crescent (MTc). Area MT is approximately 5‐mm long and 2‐mm wide, whereas the MTc forms a crescent‐shaped band of cortex 1‐mm wide. Neurones in area MT form a first‐order representation of the contralateral hemifield, whereas those in the MTc form a second‐order representation with a field discontinuity near the horizontal meridian. The representation of the vertical meridian forms the border between area MT and the MTc. In both areas, the fovea is represented ventrocaudally, and the visual field periphery is represented dorsorostrally. Analysis of single units revealed that 86% of cells in area MT show a strong selectivity for the direction of motion of visual stimuli. The proportion of direction‐selective cells in the MTc (53%), whereas lower than that in area MT, is much higher than that observed in most other visual areas. Neurones in the cortex immediately rostral to area MT and the MTc are direction selective, with receptive fields predominantly located in the visual field periphery. In contrast, only a minority of the cells in the cortex ventral to the MTc are direction selective, and their receptive fields emphasise central vision. The results suggest that the MTc is functionally closely related to area MT, and distinct from the areas forming the dorsolateral complex. The MTc may have a role in combining information about motion in the visual field, processed by area MT, with information about stimulus shape, processed by the dorsolateral complex. J. Comp. Neurol. 393:505–527, 1998. © 1998 Wiley‐Liss, Inc.

[1]  R. Weller Two cortical visual systems in Old World and New World primates. , 1988, Progress in brain research.

[2]  J M Allman,et al.  The middle temporal visual area(MT)in the bushbaby, Galago senegalensis. , 1973, Brain research.

[3]  A Grinvald,et al.  Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[5]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[6]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[7]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[9]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[10]  L. Krubitzer The organization of neocortex in mammals: are species differences really so different? , 1995, Trends in Neurosciences.

[11]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[13]  J. Horton,et al.  Myelin patterns in V1 and V2 of normal and monocularly enucleated monkeys. , 1997, Cerebral cortex.

[14]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[16]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[17]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[18]  J. Malpeli,et al.  Laminar and retinotopic organization of the macaque lateral geniculate nucleus: Magnocellular and parvocellular magnification functions , 1996, The Journal of comparative neurology.

[19]  J. Kaas,et al.  Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos , 1982, The Journal of comparative neurology.

[20]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[21]  Leslie G. Ungerleider,et al.  The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization , 1979, The Journal of comparative neurology.

[22]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[23]  Roger B. H. Tootell,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1992, Nature.

[24]  J. T. Weber,et al.  Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr , 1993, The Journal of comparative neurology.

[25]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[26]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[27]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[28]  John G. Fleagle,et al.  Primate Adaptation and Evolution , 1989 .

[29]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R B Tootell,et al.  Organization of intrinsic connections in owl monkey area MT. , 1997, Cerebral cortex.

[31]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[32]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[33]  R E Weller,et al.  Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex , 1985, The Journal of comparative neurology.

[34]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[35]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[36]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[37]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  R E Weller,et al.  Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys , 1991, The Journal of comparative neurology.

[39]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[40]  S. Petersen,et al.  Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. , 1981, Journal of neurophysiology.

[41]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[42]  J. Rauschecker,et al.  Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[44]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[45]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[46]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[47]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[48]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[50]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[51]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[52]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  L. Schmued A rapid, sensitive histochemical stain for myelin in frozen brain sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[54]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[55]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[56]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[58]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[59]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[60]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[62]  T. Albright Centrifugal directional bias in the middle temporal visual area (MT) of the macaque , 1989, Visual Neuroscience.

[63]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[64]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[65]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[66]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[67]  J. Kaas,et al.  A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). , 1974, Brain research.

[68]  M G Rosa,et al.  Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: a Lucifer yellow intracellular injection. , 1996, Cerebral cortex.

[69]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[71]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[72]  H. Tamura,et al.  Less Segregated Processing of Visual Information in V2 than in V1 of the Monkey Visual Cortex , 1996, The European journal of neuroscience.

[73]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[74]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[75]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[76]  S. Petersen,et al.  Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey , 1980, Brain Research.

[77]  J. Tigges,et al.  Experimental‐anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico‐cortical connections in the marmoset Callithrix jacchus , 1972, The Journal of comparative neurology.

[78]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[79]  R H Wurtz,et al.  Functional specialization for visual motion processing in primate cerebral cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.