Smoothable Gorenstein Points Via Marked Schemes and Double-generic Initial Ideals

Over an infinite field $K$ with $\mathrm{char}(K)\neq 2,3$, we investigate smoothable Gorenstein $K$-points in a punctual Hilbert scheme from a new point of view, which is based on properties of double-generic initial ideals and of marked schemes. We obtain the following results: (i) points defined by graded Gorenstein $K$-algebras with Hilbert function $(1,7,7,1)$ are smoothable, in the further hypothesis that $K$ is algebraically closed; (ii) the Hilbert scheme $\mathrm{Hilb}_{16}^7$ has at least three irreducible components. The properties of marked schemes give us a simple method to compute the Zariski tangent space to a Hilbert scheme at a given $K$-point, which is very useful in this context. Over an algebraically closed field of characteristic $0$, we also test our tools to find the already known result that points defined by graded Gorenstein $K$-algebras with Hilbert function $(1,5,5,1)$ are smoothable. In characteristic zero, all the results about smoothable points also hold for local Artin Gorenstein $K$-algebras.

[1]  Paolo Lella,et al.  An efficient implementation of the algorithm computing the Borel-fixed points of a Hilbert scheme , 2012, ISSAC.

[2]  Cristina Bertone,et al.  Quasi-stable ideals and Borel-fixed ideals with a given Hilbert polynomial , 2014, Applicable Algebra in Engineering, Communication and Computing.

[3]  A. Iarrobino,et al.  Some zero-dimensional generic singularities ; finite algebras having small tangent space , 1978 .

[4]  J. Fogarty ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE. , 1968 .

[5]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[6]  Francesca Cioffi,et al.  Double-generic initial ideal and Hilbert scheme , 2015, 1503.03768.

[7]  Paolo Lella,et al.  Rational components of Hilbert schemes , 2009, 0903.1029.

[8]  R. Notari,et al.  Irreducibility of the Gorenstein loci of Hilbert schemes via ray families , 2014, 1405.7678.

[9]  Bernd Sturmfels,et al.  A Note on Polynomial Reduction , 1993, J. Symb. Comput..

[10]  Werner M. Seiler,et al.  A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type , 2002, Applicable Algebra in Engineering, Communication and Computing.

[11]  Michael Stillman,et al.  A theorem on refining division orders by the reverse lexicographic order , 1987 .

[12]  Anthony Iarrobino,et al.  Compressed algebras: Artin algebras having given socle degrees and maximal length , 1984 .

[13]  Werner M. Seiler A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases , 2009, Applicable Algebra in Engineering, Communication and Computing.

[14]  S. Greco,et al.  Nagata's criterion and openness of loci for Gorenstein and complete intersection , 1978 .

[15]  Jaroslaw Buczy'nski,et al.  Finite schemes and secant varieties over arbitrary characteristic , 2017, 1703.02770.

[16]  On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10 , 2011 .

[17]  M. Rossi,et al.  Isomorphism classes of short Gorenstein local rings via Macaulay's inverse system , 2009, 0911.3565.

[18]  Francesca Cioffi,et al.  A DIVISION ALGORITHM IN AN AFFINE FRAMEWORK FOR FLAT FAMILIES COVERING HILBERT SCHEMES , 2012 .

[19]  Joachim Jelisiejew,et al.  Elementary components of Hilbert schemes of points , 2017, J. Lond. Math. Soc..

[20]  Joachim Jelisiejew Classifying local Artinian Gorenstein algebras , 2015, Collectanea Mathematica.

[21]  R. Notari,et al.  On the Gorenstein locus of the punctual Hilbert scheme of degree 11 , 2014 .

[22]  Margherita Roggero,et al.  Homogeneous varieties for Hilbert schemes , 2009, 0901.3263.

[23]  Joachim Jelisiejew Local finite-dimensional Gorenstein k-algebras having Hilbert function (1,5,5,1) are smoothable , 2012, 1212.0522.

[24]  R. Notari,et al.  On the Gorenstein locus of some punctual Hilbert schemes , 2008, 0803.1135.

[25]  Mark E. Huibregtse Some elementary components of the Hilbert scheme of points , 2014, 1407.1440.

[26]  Margherita Roggero,et al.  Term-ordering free involutive bases , 2013, J. Symb. Comput..

[27]  Francesca Cioffi,et al.  Segments and Hilbert schemes of points , 2010, Discret. Math..

[28]  D. Cartwright,et al.  Hilbert schemes of 8 points , 2008, 0803.0341.

[29]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .