From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

BackgroundNext-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data.ResultsWe assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa.ConclusionsAnalyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.

[1]  M. Donoghue,et al.  Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches , 2009, BMC Evolutionary Biology.

[2]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[3]  P. Kirk,et al.  International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) , 2012 .

[4]  N. Butterfield Modes of pre-Ediacaran multicellularity , 2009 .

[5]  Charles F. Delwiche,et al.  The Closest Living Relatives of Land Plants , 2001, Science.

[6]  M. Úriz,et al.  Population genetics at three spatial scales of a rare sponge living in fragmented habitats , 2010, BMC Evolutionary Biology.

[7]  Felix Grewe,et al.  Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. , 2004, Molecular biology and evolution.

[8]  B. Mishler,et al.  Bryophyte phylogeny: Advancing the molecular and morphological frontiers , 2007 .

[9]  Jeffrey P. Mower,et al.  Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes , 2013, BMC Evolutionary Biology.

[10]  J. G. Burleigh,et al.  Covarion structure in plastid genome evolution: a new statistical test. , 2005, Molecular biology and evolution.

[11]  R. Govaerts How many species of seed plants are there? - a response , 2003 .

[12]  M. Melkonian,et al.  Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. , 2006, Molecular biology and evolution.

[13]  R. Thorne How many species of seed plants are there , 2001 .

[14]  J. Wiens,et al.  Missing data and the accuracy of Bayesian phylogenetics , 2008 .

[15]  S. Churchill,et al.  A cladistic approach to the phylogeny of the “Bryophytes” , 1984 .

[16]  Srinivas Aluru,et al.  Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[17]  R. Jansen,et al.  Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. , 2011, Molecular biology and evolution.

[18]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[19]  P. J. Maughan,et al.  Targeted enrichment strategies for next-generation plant biology. , 2012, American journal of botany.

[20]  J. Boore,et al.  Hexapod Origins: Monophyletic or Paraphyletic? , 2003, Science.

[21]  R. A. Atherton,et al.  The evolutionary root of flowering plants. , 2013, Systematic biology.

[22]  Mike Steel,et al.  Phylogenetic mixtures on a single tree can mimic a tree of another topology. , 2007, Systematic biology.

[23]  C. Delwiche,et al.  Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. , 2010, Current biology : CB.

[24]  H. Kranz,et al.  Molecular evolution of pteridophytes and their relationship to seed plants: Evidence from complete 18S rRNA gene sequences , 1996, Plant Systematics and Evolution.

[25]  M. Donoghue,et al.  Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.

[26]  Bin Wang,et al.  The deepest divergences in land plants inferred from phylogenomic evidence , 2006, Proceedings of the National Academy of Sciences.

[27]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[28]  J. Leebens-Mack,et al.  Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids , 2006, BMC Evolutionary Biology.

[29]  F. Leliaert,et al.  Evolution and cytological diversification of the green seaweeds (Ulvophyceae). , 2010, Molecular biology and evolution.

[30]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[31]  J. G. Burleigh,et al.  Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.

[32]  Monique Turmel,et al.  The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. , 2006, Molecular biology and evolution.

[33]  J. Palmer,et al.  Chloroplast DNA systematics: a review of methods and data analysis , 1994 .

[34]  C. Delwiche,et al.  Phylogeny and Molecular Evolution of the Green Algae , 2012 .

[35]  T. Kohchi,et al.  Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA , 1986, Nature.

[36]  P. Erixon,et al.  Whole-Gene Positive Selection, Elevated Synonymous Substitution Rates, Duplication, and Indel Evolution of the Chloroplast clpP1 Gene , 2008, PloS one.

[37]  J. Palmer,et al.  Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. , 2000, Molecular biology and evolution.

[38]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[39]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[40]  D. Hillis,et al.  Taxonomic sampling, phylogenetic accuracy, and investigator bias. , 1998, Systematic biology.

[41]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[42]  T. Mockler,et al.  Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology , 2008, Nucleic acids research.

[43]  W. Maddison Gene Trees in Species Trees , 1997 .

[44]  Pamela S Soltis,et al.  Phylogeny of seed plants based on evidence from eight genes. , 2002, American journal of botany.

[45]  Mike Steel,et al.  Phylogenomics with incomplete taxon coverage: the limits to inference , 2010, BMC Evolutionary Biology.

[46]  Andrew J. Heidel,et al.  Origin of land plants: Do conjugating green algae hold the key? , 2011, BMC Evolutionary Biology.

[47]  J. Wiens,et al.  Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? , 2009, Systematic biology.

[48]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[49]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[50]  R. Jansen,et al.  Complete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. , 2011, Molecular biology and evolution.

[51]  S. Mathews,et al.  A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[53]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[54]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[55]  M. Chase,et al.  A decade of progress in plant molecular phylogenetics. , 2003, Trends in genetics : TIG.

[56]  Elizabeth A. Kellogg,et al.  Plant Systematics: A Phylogenetic Approach , 2000 .

[57]  Paul G. Wolf,et al.  Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants , 2001, Nature.

[58]  C. Lemieux,et al.  The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. , 2009, Molecular biology and evolution.

[59]  Patrick J. Biggs,et al.  Systematic Error in Seed Plant Phylogenomics , 2011, Genome biology and evolution.

[60]  C. Davis,et al.  Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales , 2012, Proceedings of the National Academy of Sciences.

[61]  Sohta A. Ishikawa,et al.  RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity , 2012, Evolutionary bioinformatics online.

[62]  Sarah Mathews,et al.  Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data. , 2009, American journal of botany.

[63]  Y. Qiu Phylogeny and evolution of charophytic algae and land plants , 2008 .

[64]  R. Duff,et al.  Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. , 1999, American journal of botany.

[65]  J. Wiens,et al.  Missing data, incomplete taxa, and phylogenetic accuracy. , 2003, Systematic biology.

[66]  F. Takaiwa,et al.  The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression , 1986, The EMBO journal.

[67]  A. Zharkikh,et al.  Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. , 1997, Molecular biology and evolution.

[68]  D. Smith Unparalleled GC content in the plastid DNA of Selaginella , 2009, Plant Molecular Biology.

[69]  B. Crandall-Stotler,et al.  PHYLOGENY AND CLASSIFICATION OF THE MARCHANTIOPHYTA , 2009 .

[70]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[71]  K. R. Mattox Classification of the green algae: a concept based on comparative cytology , 1984 .

[72]  F. Delsuc,et al.  Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.

[73]  Linda A. Raubeson,et al.  Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus , 2007, BMC Genomics.

[74]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[75]  D. Penny,et al.  Comment on "Hexapod Origins: Monophyletic or Paraphyletic?" , 2003, Science.

[76]  Yangrae Cho,et al.  The gain of three mitochondrial introns identifies liverworts as the earliest land plants , 1998, Nature.

[77]  K. Meusemann,et al.  FASconCAT: Convenient handling of data matrices. , 2010, Molecular phylogenetics and evolution.

[78]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[79]  V. Goremykin,et al.  Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages , 2005, Plant Systematics and Evolution.

[80]  A. Liston,et al.  Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae) , 2012, BMC Evolutionary Biology.

[81]  C. Delwiche,et al.  Broad Phylogenomic Sampling and the Sister Lineage of Land Plants , 2012, PloS one.

[82]  Linda A. Raubeson,et al.  Chloroplast DNA Evidence on the Ancient Evolutionary Split in Vascular Land Plants , 1992, Science.

[83]  D. I. Våge,et al.  Carotenoid dynamics in Atlantic salmon , 2006, BMC Biology.

[84]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[85]  D. Penny,et al.  The root of the mammalian tree inferred from whole mitochondrial genomes. , 2003, Molecular phylogenetics and evolution.

[86]  Ian Small,et al.  Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes , 2011, Molecular biology and evolution.

[87]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[88]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[89]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[90]  Peter R. Crane,et al.  Phylogenetic analysis of seed plants and the origin of angiosperms , 1985 .

[91]  Ralph Bock,et al.  Horizontal transfer of chloroplast genomes between plant species , 2012, Proceedings of the National Academy of Sciences.

[92]  Joel Cracraft,et al.  Assembling the tree of life , 2004 .

[93]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[94]  Alexandros Stamatakis,et al.  A Functional Phylogenomic View of the Seed Plants , 2011, PLoS genetics.

[95]  Gregory W. Stull,et al.  A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes , 2013, Applications in plant sciences.

[96]  Michael J Sanderson,et al.  Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. , 2002, American journal of botany.

[97]  Elchanan Mossel,et al.  How much can evolved characters tell us about the tree that generated them? , 2004, Mathematics of Evolution and Phylogeny.

[98]  Pamela S Soltis,et al.  Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Schrag,et al.  Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard , 2007 .

[100]  Tracey A Ruhlman,et al.  Plastid Genomes of Seed Plants , 2012 .

[101]  C R Woese,et al.  Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. , 1991, Systematic and applied microbiology.

[102]  Xian-Chun Zhang,et al.  A linear sequence of extant families and genera of lycophytes and ferns , 2011 .

[103]  D. Penny,et al.  Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. , 2014, Molecular biology and evolution.

[104]  Xin Wang,et al.  Schmeissneria: A missing link to angiosperms? , 2007, BMC Evolutionary Biology.

[105]  Olivier Gascuel,et al.  Mathematics of Evolution and Phylogeny , 2005 .

[106]  J. Shaw,et al.  Phylogeny and diversification of bryophytes. , 2004, American journal of botany.

[107]  Mark W. Chase,et al.  Phylogeny and Evolution of Angiosperms , 2005 .

[108]  J. Doyle,et al.  Seed ferns and the origin of angiosperms , 2006 .

[109]  C. Davis,et al.  Phylogenomics and Coalescent Analyses Resolve Extant Seed Plant Relationships , 2013, PloS one.

[110]  Palmer,et al.  Phylogeny of early land plants: insights from genes and genomes. , 1999, Trends in plant science.

[111]  Faisal Ababneh,et al.  The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. , 2004, Systematic biology.

[112]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[113]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[114]  D. Garbary,et al.  Motile Gametes of Land Plants: Diversity, Development, and Evolution , 2001 .

[115]  Aaron M. Duffy,et al.  Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages , 2010, BMC Evolutionary Biology.

[116]  R. Michod,et al.  Triassic origin and early radiation of multicellular volvocine algae , 2009, Proceedings of the National Academy of Sciences.

[117]  Richard M. Bateman,et al.  Pteridosperms are the backbone of seed-plant phylogeny1 , 2006 .

[118]  F. Zechman,et al.  Into the deep: New discoveries at the base of the green plant phylogeny , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[119]  J. Palmer,et al.  Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. W. Bates Bryology for the Twenty-first Century , 1998 .

[121]  Jerrold I. Davis,et al.  Plastid genomes and deep relationships among the commelinid monocot angiosperms , 2013, Cladistics : the international journal of the Willi Hennig Society.

[122]  C. Lemieux,et al.  An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus , 2007, BMC Genomics.

[123]  David Penny,et al.  A bias in ML estimates of branch lengths in the presence of multiple signals. , 2008, Molecular biology and evolution.

[124]  H. Claustre,et al.  Smallest eukaryotic organism , 1994, Nature.

[125]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[126]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[127]  Yang Zhong,et al.  The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. , 2010, Molecular biology and evolution.

[128]  Peter G. Foster,et al.  Compositional Bias May Affect Both DNA-Based and Protein-Based Phylogenetic Reconstructions , 1999, Journal of Molecular Evolution.

[129]  Richard Cronn,et al.  Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes , 2009, BMC Biology.

[130]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[131]  B. Lang,et al.  Plastid Genomes of Algae , 2012 .

[132]  Peter R. Crane,et al.  The origin and early evolution of plants on land , 1997, Nature.

[133]  Y. Qiu,et al.  A Nonflowering Land Plant Phylogeny Inferred from Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes , 2007, International Journal of Plant Sciences.

[134]  J. Gordon Burleigh,et al.  Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning , 2012, Systematic biology.

[135]  Aljos Farjon,et al.  A new classification and linear sequence of extant gymnosperms , 2011 .

[136]  Peter G Foster,et al.  Modeling compositional heterogeneity. , 2004, Systematic biology.

[137]  C. dePamphilis,et al.  Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[138]  C. Davis,et al.  Combined Morphological and Molecular Phylogeny of the Clusioid Clade (Malpighiales) and the Placement of the Ancient Rosid Macrofossil Paleoclusia , 2013, International Journal of Plant Sciences.

[139]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[140]  D. Soltis,et al.  The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? , 1999, Molecular biology and evolution.

[141]  R. McCourt,et al.  Green algae and the origin of land plants. , 2004, American journal of botany.

[142]  Pamela S Soltis,et al.  Genome-scale data, angiosperm relationships, and "ending incongruence": a cautionary tale in phylogenetics. , 2004, Trends in plant science.

[143]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[144]  Kai F. Müller,et al.  The evolution of the plastid chromosome in land plants: gene content, gene order, gene function , 2011, Plant Molecular Biology.

[145]  Amit Dhingra,et al.  Rapid and accurate pyrosequencing of angiosperm plastid genomes , 2006, BMC Plant Biology.

[146]  C. O'kelly,et al.  The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. , 2009, Molecular biology and evolution.

[147]  Douglas E. Soltis,et al.  Molecular Systematics of Plants , 1992, Springer US.

[148]  B. Crandall-Stotler,et al.  A Revised Classification of the Anthocerotophyta and a Checklist of the Hornworts of North America, North of Mexico , 2005 .

[149]  L. Kubatko,et al.  Inconsistency of phylogenetic estimates from concatenated data under coalescence. , 2007, Systematic biology.

[150]  T. Brutnell,et al.  A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf , 2007, BMC Genomics.

[151]  Debashish Bhattacharya,et al.  Algal Phylogeny and the Origin of Land Plants , 1998 .

[152]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[153]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[154]  J. Palmer,et al.  Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[155]  D. Garbary,et al.  Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[156]  C. Rothfels,et al.  Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. , 2012, Systematic biology.

[157]  Douglas E. Soltis,et al.  Choosing an Approach and an Appropriate Gene for Phylogenetic Analysis , 1998 .

[158]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[159]  C. Lemieux,et al.  The Green Algal Ancestry of Land Plants as Revealed by the Chloroplast Genome , 2007, International Journal of Plant Sciences.

[160]  Christian A. Grove,et al.  Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns , 2007, BMC Genomics.

[161]  R. Jansen,et al.  Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions , 2008, Proceedings of the National Academy of Sciences.

[162]  S. Garcia-Vallvé,et al.  Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region , 2006, BMC Evolutionary Biology.

[163]  D. Garbary,et al.  The phylogeny of land plants: A cladistic analysis based on male gametogenesis , 2004, Plant Systematics and Evolution.

[164]  Jim Leebens-Mack,et al.  Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.

[165]  K. Karol,et al.  Plastomes of Bryophytes, Lycophytes and Ferns , 2012 .

[166]  T. Nishiyama,et al.  Chloroplast phylogeny indicates that bryophytes are monophyletic. , 2004, Molecular biology and evolution.

[167]  M. Guiry,et al.  HOW MANY SPECIES OF ALGAE ARE THERE? , 2012, Journal of phycology.

[168]  Monique Turmel,et al.  Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution , 2000, Nature.

[169]  Mark Fishbein,et al.  Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. , 2012, American journal of botany.