Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation
暂无分享,去创建一个
H. Yin | Yatao Zhang | S. Telfer | Yiming Zhang | Yiming Zhang | Adil Alkaş
[1] R. L. Thankamony,et al. Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations , 2019 .
[2] M. Ferrari,et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity , 2019, Energy & Environmental Science.
[3] R. E. Schaak,et al. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. , 2019, ACS nano.
[4] P. Budd,et al. Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1 , 2019, Separation and Purification Technology.
[5] Yue‐Biao Zhang,et al. A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification. , 2019, Journal of the American Chemical Society.
[6] L. Shao,et al. Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture , 2019, Journal of Membrane Science.
[7] Yujie Ban,et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation , 2018, Journal of Membrane Science.
[8] Dan Zhao,et al. Advanced Porous Materials in Mixed Matrix Membranes , 2018, Advanced materials.
[9] Zhonghua Zhu,et al. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces , 2018 .
[10] M. Rana,et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review , 2017 .
[11] Christian J. Doonan,et al. Mixed-Matrix Membranes. , 2017, Angewandte Chemie.
[12] M. Ferrari,et al. Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.
[13] C. Field,et al. Rightsizing carbon dioxide removal , 2017, Science.
[14] Rong Wang,et al. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. , 2017, Chemical communications.
[15] Wanqin Jin,et al. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. , 2016, Angewandte Chemie.
[16] Gongpin Liu,et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation , 2016 .
[17] M. Hill,et al. Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films , 2016 .
[18] C. Doherty,et al. Hypercrosslinked Additives for Ageless Gas-Separation Membranes. , 2016, Angewandte Chemie.
[19] Lin Hao,et al. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance , 2015 .
[20] M. Sadeghi,et al. Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles , 2015 .
[21] D. F. Kennedy,et al. Gas-separation membranes loaded with porous aromatic frameworks that improve with age. , 2015, Angewandte Chemie.
[22] Ryan P. Lively,et al. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. , 2014, ChemSusChem.
[23] Freek Kapteijn,et al. Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.
[24] Aaron W Thornton,et al. Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.
[25] Enrico Drioli,et al. Engineering evaluation of CO2 separation by membrane gas separation systems , 2014 .
[26] J. Long,et al. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals† , 2013 .
[27] B. Freeman,et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .
[28] V. Chen,et al. Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .
[29] J. C. Jansen,et al. An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.
[30] Christopher R. Mason,et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .
[31] Matthew R. Hill,et al. Feasibility of zeolitic imidazolate framework membranes for clean energy applications , 2012 .
[32] B. C. Ng,et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .
[33] H. Matthews,et al. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure , 2010, Science.
[34] Enrico Drioli,et al. Membrane technologies for CO2 separation , 2010 .
[35] Enrico Drioli,et al. Membrane Gas Separation: A Review/State of the Art , 2009 .
[36] J. Ferraris,et al. Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .
[37] Jingshe Song,et al. Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene† , 2008 .
[38] L. Robeson,et al. The upper bound revisited , 2008 .
[39] Yi Li,et al. MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .
[40] Neil B. McKeown,et al. Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .
[41] R. Mahajan,et al. Challenges in forming successful mixed matrix membranes with rigid polymeric materials , 2002 .
[42] L. Yılmaz,et al. Gas permeation characteristics of polymer-zeolite mixed matrix membranes , 1994 .
[43] L. Shao,et al. CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture , 2017 .
[44] Tao Li,et al. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .