Self‐calibrated correlation imaging with k‐space variant correlation functions

Correlation imaging is a previously developed high‐speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k‐space variant correlation functions.

[1]  D. Noll,et al.  Homodyne detection in magnetic resonance imaging. , 1991, IEEE transactions on medical imaging.

[2]  R. Kim,et al.  Cardiovascular MRI: its current and future use in clinical practice , 2007, Expert review of cardiovascular therapy.

[3]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[4]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[5]  Feng Huang,et al.  k‐t GRAPPA: A k‐space implementation for dynamic MRI with high reduction factor , 2005, Magnetic resonance in medicine.

[6]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[7]  Hui Wang,et al.  Wavelet‐space correlation imaging for high‐speed MRI without motion monitoring or data segmentation , 2015, Magnetic resonance in medicine.

[8]  Karl-Olof Lövblad,et al.  Iconography : Brain and spine MRI artifacts at 3 Tesla , 2009 .

[9]  X Hu,et al.  Reduction of field of view for dynamic imaging , 1994, Magnetic resonance in medicine.

[10]  Yu Li Correlation imaging with arbitrary sampling trajectories. , 2014, Magnetic resonance imaging.

[11]  Y Wang,et al.  3D coronary MR angiography in multiple breath‐holds using a respiratory feedback monitor , 1995, Magnetic resonance in medicine.

[12]  Leslie Ying,et al.  Joint image reconstruction and sensitivity estimation in SENSE (JSENSE) , 2007, Magnetic resonance in medicine.

[13]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[14]  Zhi-Pei Liang,et al.  Maximum cross‐entropy generalized series reconstruction , 1999 .

[15]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[16]  Michael Elad,et al.  Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion , 2013, Magnetic resonance in medicine.

[17]  E R McVeigh,et al.  Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. , 1997, AJR. American journal of roentgenology.

[18]  C. Chefd'Hotel,et al.  High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting , 2009, Magnetic resonance in medicine.

[19]  José Millet-Roig,et al.  Noquist: Reduced field‐of‐view imaging by direct Fourier inversion , 2004, Magnetic resonance in medicine.

[20]  J. J. van Vaals,et al.  “Keyhole” method for accelerating imaging of contrast agent uptake , 1993, Journal of magnetic resonance imaging : JMRI.

[21]  Jong Chul Ye,et al.  Improved k–t BLAST and k–t SENSE using FOCUSS , 2007, Physics in medicine and biology.

[22]  K. Lovblad,et al.  Brain and spine MRI artifacts at 3Tesla. , 2009, Journal of neuroradiology. Journal de neuroradiologie.

[23]  C. François Advances in CT and MR Technology. , 2012, Perspectives in vascular surgery and endovascular therapy.

[24]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[25]  Zhi-Pei Liang,et al.  Superresolution reconstruction through object modeling and parameter estimation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[26]  Essa Yacoub,et al.  The rapid development of high speed, resolution and precision in fMRI , 2012, NeuroImage.

[27]  Adam P Carpenter,et al.  Managing magnetic resonance imaging machines: support tools for scheduling and planning , 2011, Health care management science.

[28]  R. Edelman t he History of MR imaging as Seen through the Pages of , 2014 .

[29]  N J Pelc,et al.  Unaliasing by Fourier‐encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI , 1999, Magnetic resonance in medicine.

[30]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[31]  R. Edelman,et al.  The history of MR imaging as seen through the pages of radiology. , 2014, Radiology.

[32]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[33]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[34]  Norbert Schuff,et al.  Improved Model-Based Magnetic Resonance Spectroscopic Imaging , 2007, IEEE Transactions on Medical Imaging.

[35]  L. Ying,et al.  Nonlinear GRAPPA: A kernel approach to parallel MRI reconstruction , 2012, Magnetic resonance in medicine.

[36]  Yu Li,et al.  Correlation imaging for multiscan MRI with parallel data acquisition , 2012, Magnetic resonance in medicine.

[37]  O. Haraldseth,et al.  K‐space substitution: A novel dynamic imaging technique , 1993, Magnetic resonance in medicine.

[38]  A G Webb,et al.  Applications of reduced‐encoding MR imaging with generalized‐series reconstruction (RIGR) , 1993, Journal of magnetic resonance imaging : JMRI.

[39]  X Hu,et al.  On the “keyhole” technique , 1994, Journal of magnetic resonance imaging : JMRI.

[40]  Diego R Martin,et al.  Abdominal Magnetic Resonance Imaging at 3.0 T: Problem or a Promise for the Future? , 2005, Topics in magnetic resonance imaging : TMRI.

[41]  Z P Liang,et al.  A generalized series approach to MR spectroscopic imaging. , 1991, IEEE transactions on medical imaging.

[42]  E. Jackson,et al.  A review of MRI pulse sequences and techniques in neuroimaging. , 1997, Surgical neurology.

[43]  D. Sodickson,et al.  Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: Electromagnetic field considerations , 2003, Magnetic resonance in medicine.

[44]  Hong Jiang,et al.  Dynamic imaging by model estimation , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[45]  J L Boxerman,et al.  Segmented K-space cine breath-hold cardiovascular MR imaging: Part 2. Evaluation of aortic vasculopathy. , 1997, AJR. American journal of roentgenology.

[46]  Kyung K Peck,et al.  Functional MRI in the Brain Tumor Patient , 2004, Topics in magnetic resonance imaging : TMRI.