Structural Organization of the RNA Polymerase-Promoter Open Complex

We have used systematic site-specific protein-DNA photocrosslinking to define interactions between bacterial RNA polymerase (RNAP) and promoter DNA in the catalytically competent RNAP-promoter open complex (RPo). We have mapped more than 100 distinct crosslinks between individual segments of RNAP subunits and individual phosphates of promoter DNA. The results provide a comprehensive description of protein-DNA interactions in RPo, permit construction of a detailed model for the structure of RPo, and permit analysis of effects of a transcriptional activator on the structure of RPo.

[1]  S. Busby,et al.  DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study. , 2000, Nucleic acids research.

[2]  R. Ebright,et al.  Transcription Activation at Class II CAP-Dependent Promoters: Two Interactions between CAP and RNA Polymerase , 1996, Cell.

[3]  R. Burgess,et al.  Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. , 1980, Analytical biochemistry.

[4]  G. Allen,et al.  Sequencing of proteins and peptides , 1981 .

[5]  K. Severinov,et al.  Direct localization of a beta-subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W R McClure,et al.  Characterization of ribonucleic acid polymerase-T7 promoter binary complexes. , 1980, Biochemistry.

[7]  Bryan J. Smith Chemical Cleavage of Proteins at Asparaginyl-Glycyl Peptide Bonds , 1996 .

[8]  K. Severinov,et al.  Direct localization of a b -subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase , 2000 .

[9]  M. Shirakawa,et al.  Solution Structure of the Activator Contact Domain of the RNA Polymerase α Subunit , 1995, Science.

[10]  C. Gross,et al.  Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. , 1988, Journal of molecular biology.

[11]  R. Burgess,et al.  Direct evidence for the preferential binding of Escherichia coli RNA polymerase holoenzyme to the ends of deoxyribonucleic acid restriction fragments. , 1983, Biochemistry.

[12]  R. Ebright,et al.  Determination of the orientation of a DNA binding motif in a protein-DNA complex by photocrosslinking. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Jacquet,et al.  The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. , 1999, Journal of molecular biology.

[14]  R. Ebright,et al.  Domain organization of RNA polymerase α subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding , 1994, Cell.

[15]  K. Severinov,et al.  Identification of RNA Polymerase β′ Subunit Segment Contacting the Melted Region of the lacUV5 Promoter* , 2000, The Journal of Biological Chemistry.

[16]  P. V. Hippel,et al.  An Integrated Model of the Transcription Complex in Elongation, Termination, and Editing , 1998 .

[17]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[18]  E. Nudler,et al.  Spatial organization of transcription elongation complex in Escherichia coli. , 1998, Science.

[19]  G. Orphanides,et al.  High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T Lagrange,et al.  Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Fujita,et al.  Organization of open complexes at Escherichia coli promoters. Location of promoter DNA sites close to region 2.5 of the sigma70 subunit of RNA polymerase. , 1999, Journal of Biological Chemistry.

[22]  J. Gralla,et al.  KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. , 1989, The Journal of biological chemistry.

[23]  S. Darst,et al.  Structural studies of Escherichia coli RNA polymerase. , 1998, Cold Spring Harbor symposia on quantitative biology.

[24]  R. Ebright,et al.  Transcription activation at Class II CAP‐dependent promoters , 1993, Molecular microbiology.

[25]  R. Burgess,et al.  Localization of a ς70 Binding Site on the N Terminus of the Escherichia coli RNA Polymerase β′ Subunit* , 1998, The Journal of Biological Chemistry.

[26]  R. Ebright,et al.  Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Michel Werner,et al.  2 Yeast RNA Polymerase Subunits and Genes , 1992 .

[28]  T. Steitz,et al.  Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees , 1991, Science.

[29]  Solution structure of the activator contact domain of the RNA polymerase alpha subunit. , 1995, Science.

[30]  G. Jensen,et al.  Electron Crystal Structure of an RNA Polymerase II Transcription Elongation Complex , 1999, Cell.

[31]  C. Bustamante,et al.  Wrapping of DNA around the E.coli RNA polymerase open promoter complex , 1999, The EMBO journal.

[32]  R. Burgess,et al.  Nitrocellulose filter binding studies of the interactions of Escherichia coli RNA polymerase holoenzyme with deoxyribonucleic acid restriction fragments: evidence for multiple classes of nonpromoter interactions, some of which display promoter-like properties. , 1982, Biochemistry.

[33]  K. Murakami,et al.  Mapping the promoter DNA sites proximal to conserved regions of sigma 70 in an Escherichia coli RNA polymerase-lacUV5 open promoter complex. , 1998, Biochemistry.

[34]  R. Ebright,et al.  Site-specific protein-DNA photocrosslinking. Analysis of bacterial transcription initiation complexes. , 2001, Methods in molecular biology.

[35]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[36]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[37]  R. Ebright,et al.  Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. , 1999, Genes & development.

[38]  E. Nudler Transcription elongation: structural basis and mechanisms. , 1999, Journal of molecular biology.

[39]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[40]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[41]  Richard H. Ebright,et al.  Promoter structure, promoter recognition, and transcription activation in prokaryotes , 1994, Cell.

[42]  S. Darst,et al.  Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography. , 1998, Journal of structural biology.

[43]  R. Losick,et al.  6 Bacterial Sigma Factors , 1992 .

[44]  Seth A. Darst,et al.  Three-dimensional structure of yeast RNA polymerase II at 16 Å resolution , 1991, Cell.

[45]  M. Thomas Record,et al.  RNA Polymerase-Promoter Interactions: the Comings and Goings of RNA Polymerase , 1998, Journal of bacteriology.

[46]  K. Severinov,et al.  Assembly of functional Escherichia coli RNA polymerase containing beta subunit fragments. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Chamberlin RNA Polymerase—An Overview , 1976 .

[48]  T Lagrange,et al.  New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. , 1998, Genes & development.

[49]  A. Gunasekera,et al.  Derivatives of CAP having no solvent-accessible cysteine residues, or having a unique solvent-accessible cysteine residue at amino acid 2 of the helix-turn-helix motif. , 1991, Journal of biomolecular structure & dynamics.

[50]  E. Zaychikov,et al.  Studies of the functional topography of Escherichia coli RNA polymerase. A method for localization of the sites of affinity labelling. , 1989, European journal of biochemistry.

[51]  M. Chamberlin,et al.  Binding of Escherichia coli RNA polymerase to T7 DNA. Displacement of holoenzyme from promoter complexes by heparin. , 1977, The Journal of biological chemistry.

[52]  R. Young,et al.  RNA polymerase II. , 1991, Annual review of biochemistry.

[53]  K. Severinov,et al.  Structural Modules of the Large Subunits of RNA Polymerase , 1996, The Journal of Biological Chemistry.

[54]  T. Heyduk,et al.  Conformational Changes of Escherichia coli RNA Polymerase ς70 Factor Induced by Binding to the Core Enzyme* , 1998, The Journal of Biological Chemistry.

[55]  Helen M. Berman,et al.  Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface. , 1997, Journal of molecular biology.

[56]  M. Grachev,et al.  Studies on the functional topography of Escherichia coli RNA polymerase. Highly selective affinity labelling by analogues of initiating substrates. , 1987, European journal of biochemistry.

[57]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[58]  Akira Ishihama,et al.  Mapping the σ70 subunit contact sites on Escherichia coli RNA polymerase with a σ70-conjugated chemical protease , 1998 .

[59]  R. Ebright RNA polymerase-DNA interaction: structures of intermediate, open, and elongation complexes. , 1998, Cold Spring Harbor symposia on quantitative biology.

[60]  R. Burgess,et al.  Mutational Analysis of β′260–309, a ς70 Binding Site Located on Escherichia coliCore RNA Polymerase* , 2000, The Journal of Biological Chemistry.