How Widespread is Metabolite Sensing by Ribosome-Arresting Nascent Peptides?

[1]  Pascale Cossart,et al.  Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria , 2016, Science.

[2]  Daniel N. Wilson,et al.  Translation regulation via nascent polypeptide-mediated ribosome stalling. , 2016, Current opinion in structural biology.

[3]  H. Taguchi,et al.  Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing , 2016, Proceedings of the National Academy of Sciences.

[4]  Daniel N. Wilson,et al.  Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome , 2016, Nucleic acids research.

[5]  T. Tuller,et al.  A comparative genomics study on the effect of individual amino acids on ribosome stalling , 2015, BMC Genomics.

[6]  S. Kojima,et al.  Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria , 2015, Proceedings of the National Academy of Sciences.

[7]  G. von Heijne,et al.  Cotranslational Protein Folding inside the Ribosome Exit Tunnel , 2015, Cell reports.

[8]  Daniel N. Wilson,et al.  The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex , 2015, Nature Structural &Molecular Biology.

[9]  Raktim N. Roy,et al.  The Mechanism of Inhibition of Protein Synthesis by the Proline-Rich Peptide Oncocin , 2015, Nature Structural &Molecular Biology.

[10]  Jiao Ma,et al.  Identification and characterization of sORF-encoded polypeptides , 2015, Critical reviews in biochemistry and molecular biology.

[11]  A. Schier,et al.  Identifying (non‐)coding RNAs and small peptides: Challenges and opportunities , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Daniel N. Wilson,et al.  Drug sensing by the ribosome induces translational arrest via active site perturbation. , 2014, Molecular cell.

[13]  David W. Schryer,et al.  The general mode of translation inhibition by macrolide antibiotics , 2014, Proceedings of the National Academy of Sciences.

[14]  R. Beckmann,et al.  Molecular basis for the ribosome functioning as an L-tryptophan sensor. , 2014, Cell reports.

[15]  Amber R. Davis,et al.  Sequence selectivity of macrolide-induced translational attenuation , 2014, Proceedings of the National Academy of Sciences.

[16]  P. Emsley,et al.  The Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014 .

[17]  Daniel N. Wilson,et al.  Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide , 2014, Nature Communications.

[18]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[19]  Kirsten Jung,et al.  Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P , 2013, Proceedings of the National Academy of Sciences.

[20]  Koreaki Ito,et al.  Arrest peptides: cis-acting modulators of translation. , 2013, Annual review of biochemistry.

[21]  Daniel N. Wilson,et al.  Nascent peptides that block protein synthesis in bacteria , 2013, Proceedings of the National Academy of Sciences.

[22]  M. Rodnina,et al.  EF-P Is Essential for Rapid Synthesis of Proteins Containing Consecutive Proline Residues , 2013, Science.

[23]  Daniel N. Wilson,et al.  Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches , 2013, Science.

[24]  Koreaki Ito,et al.  Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. , 2012, Molecular cell.

[25]  D. Klepacki,et al.  Role of antibiotic ligand in nascent peptide-dependent ribosome stalling , 2011, Proceedings of the National Academy of Sciences.

[26]  Daniel N. Wilson,et al.  The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. , 2011, Current opinion in structural biology.

[27]  Theresa Braine,et al.  Race against time to develop new antibiotics. , 2011, Bulletin of the World Health Organization.

[28]  Shashi Bhushan,et al.  SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center , 2011, PLoS biology.

[29]  Michele Vendruscolo,et al.  Transient tertiary structure formation within the ribosome exit port. , 2010, Journal of the American Chemical Society.

[30]  Daniel N. Wilson,et al.  Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. , 2010, Molecular cell.

[31]  Vijay S. Pande,et al.  Non-Bulk-Like Solvent Behavior in the Ribosome Exit Tunnel , 2010, PLoS Comput. Biol..

[32]  J. Cate,et al.  Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action , 2010, Proceedings of the National Academy of Sciences.

[33]  T. Steitz,et al.  Revisiting the structures of several antibiotics bound to the bacterial ribosome , 2010, Proceedings of the National Academy of Sciences.

[34]  Marco Gartmann,et al.  α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel , 2010, Nature Structural &Molecular Biology.

[35]  Klaus Schulten,et al.  Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling , 2009, Science.

[36]  Daniel N. Wilson The A–Z of bacterial translation inhibitors , 2009, Critical reviews in biochemistry and molecular biology.

[37]  K. Pogliano,et al.  A ribosome–nascent chain sensor of membrane protein biogenesis in Bacillus subtilis , 2009, The EMBO journal.

[38]  C. J. Woolstenhulme,et al.  Genetic Identification of Nascent Peptides That Induce Ribosome Stalling* , 2009, The Journal of Biological Chemistry.

[39]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[40]  H. Ramu,et al.  Programmed drug‐dependent ribosome stalling , 2009, Molecular microbiology.

[41]  Vijay S Pande,et al.  Side-chain recognition and gating in the ribosome exit tunnel , 2008, Proceedings of the National Academy of Sciences.

[42]  C. Yanofsky,et al.  Ribosome Recycling Factor and Release Factor 3 Action Promotes TnaC-Peptidyl-tRNA Dropoff and Relieves Ribosome Stalling during Tryptophan Induction of tna Operon Expression in Escherichia coli , 2007, Journal of bacteriology.

[43]  C. Hayes,et al.  Prolyl-tRNAPro in the A-site of SecM-arrested Ribosomes Inhibits the Recruitment of Transfer-messenger RNA* , 2006, Journal of Biological Chemistry.

[44]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[45]  Koreaki Ito,et al.  Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. , 2006, Molecular cell.

[46]  Jianli Lu,et al.  Folding zones inside the ribosomal exit tunnel , 2005, Nature Structural &Molecular Biology.

[47]  S. Naito,et al.  Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. , 2005, Genes & development.

[48]  C. Deutsch,et al.  Secondary structure formation of a transmembrane segment in Kv channels. , 2005, Biochemistry.

[49]  C. Yanofsky,et al.  The mechanism of tryptophan induction of tryptophanase operon expression: Tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNAPro , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Yanofsky,et al.  Reproducing tna Operon Regulation in Vitro in an S-30 System , 2001, The Journal of Biological Chemistry.

[51]  Z. Wang,et al.  Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa , 1997, Molecular and cellular biology.

[52]  J. Boeke,et al.  Small open reading frames: beautiful needles in the haystack. , 1997, Genome research.

[53]  D. Morris,et al.  The Upstream Open Reading Frame of the mRNA Encoding S-Adenosylmethionine Decarboxylase Is a Polyamine-responsive Translational Control Element* , 1996, The Journal of Biological Chemistry.

[54]  J. Hill,et al.  Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5' transcript leader on regulation by the upstream open reading frame. , 1993, The Journal of biological chemistry.

[55]  J. Hill,et al.  Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. , 1993, The Journal of biological chemistry.

[56]  D. Dubnau,et al.  Demonstration of erythromycin-dependent stalling of ribosomes on the ermC leader transcript. , 1987, The Journal of biological chemistry.

[57]  R. Milligan,et al.  Location of exit channel for nascent protein in 80S ribosome , 1986, Nature.

[58]  R. Brückner,et al.  Regulation of the inducible chloramphenicol acetyltransferase gene of the Staphylococcus aureus plasmid pUB112. , 1985, The EMBO journal.

[59]  D. Dubnau,et al.  Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. , 1980, Nucleic acids research.

[60]  S. Horinouchi,et al.  Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Ito,et al.  Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. , 2001, Molecular cell.

[62]  L. Gold,et al.  Extension inhibition analysis of translation initiation complexes. , 1988, Methods in enzymology.

[63]  L. Gold,et al.  [27] Extension inhibition analysis of translation initiation complexes☆ , 1988 .

[64]  Jun Zhang,et al.  Figures and Figure Supplements Mechanisms of Ribosome Stalling by Secm at Multiple Elongation Steps , 2022 .