Additive Adsorption and Interfacial Characteristics of Nucleate Pool Boiling in Aqueous Surfactant Solutions

Interfacial phenomena and ebullient dynamics in saturated nucleate pool boiling of aqueous solutions of three surfdctants that have different molecular weight and ionic nature are experimentally investigated. The additive molecular mobility at interfaces manifests in a dynamic surface tension behavior (surfactant adsorption-desorption at the liquid-vapor interface), and varying surface wetting (contact angle) with concentration (surfactant physisorption at the solid-liquid interface). This tends to change, enhance, and control the boiling behavior significantly, and an optimum heat transfer enhancement is obtained in solutions at or near the critical micelle concentration (CMC) of the surfactant

[1]  B. Mikic,et al.  A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics , 1969 .

[2]  Juntao Zhang EXPERIMENTAL AND COMPUTATIONAL STUDY OF NUCLEATE POOL BOILING HEAT TRANSFER IN AQUEOUS SURFACTANT AND POLYMER SOLUTIONS , 2004 .

[3]  Juntao Zhang,et al.  Visualization of Ebullient Dynamics in Surfactant Solutions , 2003 .

[4]  R. M. Manglik,et al.  Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant , 2000 .

[5]  B. Jönsson Surfactants and Polymers in Aqueous Solution , 1998 .

[6]  Arthur E. Bergles,et al.  Enhancement of pool boiling , 1997 .

[7]  V. Wasekar Nucleate pool boiling heat transfer in aqueous surfactant solutions , 2001 .

[8]  Raj M. Manglik,et al.  A Review of Enhanced Heat Transfer in Nucleate Pool Boiling of Aqueous Surfactant and Polymeric Solutions , 1999 .

[9]  Clarence A. Miller,et al.  Interfacial Phenomena: Equilibrium and Dynamic Effects , 1985 .

[10]  Nilanjana G. Basu,et al.  Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling , 2002 .

[11]  C. Blecker,et al.  Application of the Quasi-Static Mode of the Drop Volume Technique to the Determination of Fundamental Surfactant Properties , 1995 .

[12]  W. Rohsenow A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids , 1952, Journal of Fluids Engineering.

[13]  P. Levitz Adsorption of non ionic surfactants at the solid/water interface , 2002 .

[14]  J. Thome Enhanced Boiling Heat Transfer , 1990 .

[15]  Albert Mosyak,et al.  The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling , 2001 .

[16]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .

[17]  R. J. Hunter Foundations of Colloid Science , 1987 .

[18]  M. J. Rosen Surfactants and Interfacial Phenomena , 1978 .

[19]  G. Hetsroni,et al.  Brief communication An analytical model for nucleate pool boiling with surfactant additives , 2002 .

[20]  Raj M. Manglik,et al.  Effect of Ethoxylation and Molecular Weight of Cationic Surfactants on Nucleate Boiling in Aqueous Solutions , 2004 .

[21]  R. M. Manglik,et al.  Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions , 2001 .

[22]  R. M. Manglik,et al.  The influence of additive molecular weight and ionic nature on the pool boiling performance of aqueous surfactant solutions , 2002 .

[23]  V. Dhir BOILING HEAT TRANSFER , 1998 .

[24]  Masahiro Shoji,et al.  NONLINEAR DYNAMICS IN BOILING PHENOMENA , 1996 .

[25]  Dongsheng Wen,et al.  Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions , 2002 .

[26]  D. Fuerstenau Equilibrium and Nonequilibrium Phenomena Associated with the Adsorption of Ionic Surfactants at Solid–Water Interfaces , 2002 .