A domain-theoretic approach to fuzzy metric spaces

Abstract We introduce a partial order ⊑ M on the set B X of formal balls of a fuzzy metric space ( X , M , ∧ ) in the sense of Kramosil and Michalek, and discuss some of its properties. We also characterize when the poset ( B X , ⊑ M ) is a continuous domain by means of a new notion of fuzzy metric completeness introduced here. The well-known theorem of Edalat and Heckmann that a metric space is complete if and only if its poset of formal balls is a continuous domain, is deduced from our characterization.

[1]  Ralph Kopperman,et al.  Bounded complete models of topological spaces , 2004 .

[2]  P. Veeramani,et al.  On some results of analysis for fuzzy metric spaces , 1997, Fuzzy Sets Syst..

[3]  Pawel Waszkiewicz Partial metrisability of continuous posets , 2006, Math. Struct. Comput. Sci..

[4]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[5]  Ivan Kramosil,et al.  Fuzzy metrics and statistical metric spaces , 1975, Kybernetika.

[6]  B. Honari,et al.  The space of formal balls and models of quasi-metric spaces , 2009, Math. Struct. Comput. Sci..

[7]  A. George,et al.  On some results in fuzzy metric spaces , 1994 .

[8]  Michel P. Schellekens,et al.  A characterization of partial metrizability: domains are quantifiable , 2003, Theor. Comput. Sci..

[9]  Valentín Gregori,et al.  Some properties of fuzzy metric spaces , 2000, Fuzzy Sets Syst..

[10]  Valentín Gregory,et al.  Some properites of fuzzy metric spaces , 2000 .

[11]  Óscar Valero,et al.  A quantitative computational model for complete partial metric spaces via formal balls† , 2009, Mathematical Structures in Computer Science.

[12]  李幼升,et al.  Ph , 1989 .

[13]  Salvador Romaguera,et al.  Complexity spaces as quantitative domains of computation , 2011 .

[14]  Salvador Romaguera,et al.  Examples of non-strong fuzzy metrics , 2011, Fuzzy Sets Syst..

[15]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[16]  Óscar Valero,et al.  Domain theoretic characterisations of quasi-metric completeness in terms of formal balls† , 2010, Mathematical Structures in Computer Science.

[17]  Pawel Waszkiewicz,et al.  Quantitative Continuous Domains , 2003, Appl. Categorical Struct..

[18]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[19]  Jimmie D. Lawson,et al.  Spaces of maximal points , 1997, Mathematical Structures in Computer Science.

[20]  Abbas Edalat,et al.  Computable Banach Spaces via Domain Theory , 1999, Theor. Comput. Sci..

[21]  Samuel Morillas,et al.  Examples of fuzzy metrics and applications , 2011, Fuzzy Sets Syst..