Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines
暂无分享,去创建一个
Yeon Ju Lee | Jungho Yoon | Hong Oh Kim | Byeongseon Jeong | Hong Oh Kim | Y. Lee | Byeongseon Jeong | Jungho Yoon
[1] Lucia Romani,et al. From approximating to interpolatory non-stationary subdivision schemes with the same generation properties , 2010, Adv. Comput. Math..
[2] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[3] Yibao Li,et al. Phase-field simulations of crystal growth with adaptive mesh refinement , 2012 .
[4] Carolina Vittoria Beccari,et al. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..
[5] Y. Lee,et al. Non-stationary subdivision schemes for surface interpolation based on exponential polynomials , 2010 .
[6] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[7] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[8] Nira Dyn,et al. Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.
[9] Nira Dyn,et al. Exponentials Reproducing Subdivision Schemes , 2003, Found. Comput. Math..
[10] Nira Dyn,et al. Analysis of Univariate Nonstationary Subdivision Schemes with Application to Gaussian-Based Interpolatory Schemes , 2007, SIAM J. Math. Anal..
[11] Samuel Karlin,et al. Studies in spline functions and approximation theory , 1976 .
[12] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[13] P. Shunmugaraj,et al. A non-stationary subdivision scheme for curve interpolation , 2008 .
[14] Lucia Romani. From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .
[15] P. C. Das,et al. A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes , 2003, Comput. Aided Geom. Des..
[16] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[17] P. C. Das,et al. A subdivision algorithm for trigonometric spline curves , 2002, Comput. Aided Geom. Des..
[18] Charles A. Micchelli,et al. Using Two-Slanted Matrices for Subdivision , 1994 .
[19] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[20] Myung-joo Kang,et al. MULTIPLE-OBJECT SEGMENTATION WITHOUT SUPERVISION BY ADAPTIVE GLOBAL MAXIMUM GROUPING , 2011 .
[21] C. Micchelli,et al. Stationary Subdivision , 1991 .
[22] Carolina Vittoria Beccari,et al. An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control , 2007, Comput. Aided Geom. Des..
[23] Sunita Daniel,et al. An approximating C2 non-stationary subdivision scheme , 2009, Comput. Aided Geom. Des..
[24] Charles A. Micchelli,et al. Interpolatory Subdivision Schemes and Wavelets , 1996 .
[25] Wolfgang Dahmen,et al. On multivariate E-splines☆ , 1989 .
[26] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[27] Carolina Vittoria Beccari,et al. Shape controlled interpolatory ternary subdivision , 2009, Appl. Math. Comput..