Optimal asymmetric phase-covariant and real state cloning in d dimensions

We generalize three symmetric cloners to the asymmetric cases and present three explicit cloning transformations as well as their corresponding fidelity distributions in d dimensions. The three asymmetric cloners, including the optimal asymmetric phase-covariant cloning (APCC) and the suboptimal asymmetric economical phase-covariant cloning (AEPCC) working without ancilla and the optimal asymmetric real state cloning (ARSC), together with the optimal asymmetric universal quantum cloning (AUQC) construct a generic cloning, where the quantum information of initial systems of different pure input states in d dimensions with their information not completely known can be optimally distributed to different final systems. By comparison of the fidelity distributions of the four asymmetric cloners, some interesting results can be obtained.

[1]  C. H. Oh,et al.  Experimental quantum cloning with prior partial information. , 2004, Physical Review Letters.

[2]  Mark Hillery,et al.  UNIVERSAL OPTIMAL CLONING OF ARBITRARY QUANTUM STATES : FROM QUBITS TO QUANTUM REGISTERS , 1998 .

[3]  Iulia Ghiu Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol , 2003 .

[4]  Chiara Macchiavello Optimal estimation of multiple phases , 2003 .

[5]  Liu Ye,et al.  Optimal real state cloning in d dimensions , 2007 .

[6]  Liu Ye,et al.  Optimal symmetric economical phase-covariant quantum cloning , 2007 .

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  J. Fiurasek,et al.  Experimental phase-covariant cloning of polarization states of single photons , 2006 .

[9]  Dieter Suter,et al.  Experimental realization of 1 --> 2 asymmetric phase-covariant quantum cloning , 2006, quant-ph/0612132.

[10]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  N. Gisin,et al.  Multipartite Asymmetric Quantum Cloning , 2005 .

[12]  Robert B. Griffiths,et al.  Two qubit copying machine for economical quantum eavesdropping , 1999 .

[13]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[14]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[15]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.

[16]  Nicolas J. Cerf,et al.  Economical quantum cloning in any dimension , 2005 .

[17]  T. Durt Characterization of low-cost one-to-two qubit cloning (10 pages) , 2004 .

[18]  Liu Ye,et al.  Optimal asymmetric phase-covariant quantum cloning , 2006 .

[19]  Joonwoo Bae,et al.  Asymptotic quantum cloning is state estimation. , 2006, Physical review letters.

[20]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[21]  D. Dieks Communication by EPR devices , 1982 .

[22]  Anders Karlsson,et al.  Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation. , 2005, Physical review letters.

[23]  Giacomo Mauro D'Ariano,et al.  Economical phase-covariant cloning of qudits , 2005 .

[24]  G. M. D'Ariano,et al.  Phase-covariant quantum cloning , 1999, quant-ph/9909046.

[25]  H. Imai,et al.  Phase-covariant quantum cloning of qudits , 2002, quant-ph/0205126.

[26]  Nicolas J. Cerf,et al.  Cloning a real d-dimensional quantum state on the edge of the no-signaling condition , 2003 .

[27]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.