Efficient transition metal dichalcogenides exfoliation by cellulose nanocrystals for ultrabroad-pH/temp stable aqueous dispersions and multi-responsive photonic films

[1]  Thomas G Parton,et al.  Hyperspectral Imaging of Photonic Cellulose Nanocrystal Films: Structure of Local Defects and Implications for Self-Assembly Pathways , 2020, ACS nano.

[2]  Oriana M. Vanderfleet,et al.  Production routes to tailor the performance of cellulose nanocrystals , 2020, Nature Reviews Materials.

[3]  A. Whittaker,et al.  Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals. , 2020, ACS nano.

[4]  J. Sugiyama,et al.  Dual Response of Photonic Film with Chiral Nematic Cellulose Nanocrystal: Humidity and Formaldehyde. , 2020, ACS applied materials & interfaces.

[5]  F. Lenrick,et al.  Realization of Ultrahigh Quality InGaN Platelets to be Used as Relaxed Templates for Red Micro-LEDs , 2020, ACS applied materials & interfaces.

[6]  Yuan Yuan,et al.  Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. , 2020, Carbohydrate polymers.

[7]  M. MacLachlan,et al.  Cellulose Nanocrystal Elastomers with Reversible Visible Color. , 2020, Angewandte Chemie.

[8]  Jiahao Yu,et al.  Effect of pH on the aggregation behavior of cellulose nanocrystals in aqueous medium , 2019, Materials Research Express.

[9]  J. Coleman,et al.  Length- and Thickness-Dependent Optical Response of Liquid-Exfoliated Transition Metal Dichalcogenides , 2019, Chemistry of Materials.

[10]  E. Zussman,et al.  pH‐Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine) , 2019, Journal of Polymer Science Part B: Polymer Physics.

[11]  Xinling Wang,et al.  Humidity and Heat Dual Response Cellulose Nanocrystals/ Poly(N-isopropylacrylamide) Composite Films with Cyclic Performance. , 2019, ACS applied materials & interfaces.

[12]  Sailing He,et al.  pH dependence of the chirality of nematic cellulose nanocrystals , 2019, Scientific Reports.

[13]  Yu Liu,et al.  Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[14]  M. MacLachlan,et al.  Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics , 2019, Nature Communications.

[15]  Mikael Käll,et al.  Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators , 2018, Nature Nanotechnology.

[16]  Zhi‐Kang Xu,et al.  Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity. , 2018, ACS nano.

[17]  T. Russell,et al.  Adaptive Structured Pickering Emulsions and Porous Materials Based on Cellulose Nanocrystal Surfactants. , 2018, Angewandte Chemie.

[18]  R. Mahar,et al.  Aqueous hardness removal by anionic functionalized electrospun cellulose nanofibers , 2018, Cellulose.

[19]  Xiaochen Wu,et al.  Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials , 2018, Chemical Engineering Journal.

[20]  R. M. Parker,et al.  The Self‐Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance , 2018, Advanced materials.

[21]  Pengfei Liu,et al.  Rapidly Responsive and Flexible Chiral Nematic Cellulose Nanocrystal Composites as Multifunctional Rewritable Photonic Papers with Eco-Friendly Inks. , 2018, ACS applied materials & interfaces.

[22]  Huang-Hao Yang,et al.  Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. , 2017, Nanoscale.

[23]  J. Coleman,et al.  Robustness of Size Selection and Spectroscopic Size, Thickness and Monolayer Metrics of Liquid‐Exfoliated WS2 , 2017 .

[24]  T. Russell,et al.  Liquid Tubule Formation and Stabilization Using Cellulose Nanocrystal Surfactants. , 2017, Angewandte Chemie.

[25]  Kun Yao,et al.  Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color , 2017, Advanced materials.

[26]  Mingjie Li,et al.  Bioinspired Coupling of Inorganic Layered Nanomaterials with Marine Polysaccharides for Efficient Aqueous Exfoliation and Smart Actuating Hybrids , 2017, Advanced materials.

[27]  Ping Liu,et al.  Modifying Mechanical, Optical Properties and Thermal Processability of Iridescent Cellulose Nanocrystal Films Using Ionic Liquid. , 2017, ACS applied materials & interfaces.

[28]  S. Vignolini,et al.  Flexible Photonic Cellulose Nanocrystal Films , 2016, Advanced materials.

[29]  D. Das,et al.  Efficient MoS2 Exfoliation by Cross-β-Amyloid Nanotubes for Multistimuli-Responsive and Biodegradable Aqueous Dispersions. , 2016, Angewandte Chemie.

[30]  M. MacLachlan,et al.  Structure and transformation of tactoids in cellulose nanocrystal suspensions , 2016, Nature Communications.

[31]  Byung-Kwan Cho,et al.  DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. , 2016, ACS applied materials & interfaces.

[32]  Reza Khazaeinezhad,et al.  Flexible transition metal dichalcogenide nanosheets for band-selective photodetection , 2015, Nature Communications.

[33]  Yong-Wei Zhang,et al.  Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides. , 2015, Journal of the American Chemical Society.

[34]  Steven D. Lacey,et al.  Nanocellulose as green dispersant for two-dimensional energy materials , 2015 .

[35]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[36]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[37]  Ping Liu,et al.  Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. , 2014, Biomacromolecules.

[38]  Niall McEvoy,et al.  Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets , 2014, Nature Communications.

[39]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[40]  Gang Liu,et al.  PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual‐Modal CT/Photoacoustic Imaging Guided Photothermal Therapy , 2014, Advanced materials.

[41]  Bruce Jefferson,et al.  Non-covalent protein–polysaccharide interactions and their influence on membrane fouling , 2013 .

[42]  D. Gao,et al.  Ferromagnetism in exfoliated tungsten disulfide nanosheets , 2013, Nanoscale Research Letters.

[43]  R. Berry,et al.  Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.

[44]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[45]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[46]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[47]  Ching-Ping Wong,et al.  Large-scale production of two-dimensional nanosheets , 2012 .

[48]  C. Qian,et al.  Effects of pH and salt concentration on the formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes. , 2011, Biomacromolecules.

[49]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[50]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[51]  W. Jia,et al.  Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane , 2017, Nano Research.