Tackling heart failure in the twenty-first century

[1]  Chaoqian Xu,et al.  The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 , 2011, Nature Medicine.

[2]  D. Kass,et al.  Reversal of Global Apoptosis and Regional Stress Kinase Activation by Cardiac Resynchronization , 2008, Circulation.

[3]  D. Kass,et al.  Phosphodiesterase type 5: expanding roles in cardiovascular regulation. , 2007, Circulation research.

[4]  ShinichiHirotani,et al.  Inhibition of Glycogen Synthase Kinase 3β During Heart Failure Is Protective , 2007 .

[5]  J. Ávila,et al.  Inhibition of Glycogen Synthase Kinase 3&bgr; During Heart Failure Is Protective , 2007, Circulation research.

[6]  S. Kardia,et al.  A functional polymorphism of the Galphaq (GNAQ) gene is associated with accelerated mortality in African-American heart failure. , 2007, Human molecular genetics.

[7]  Xianzhong Yu,et al.  Glycogen Synthase Kinase-3α Reduces Cardiac Growth and Pressure Overload-induced Cardiac Hypertrophy by Inhibition of Extracellular Signal-regulated Kinases* , 2007, Journal of Biological Chemistry.

[8]  B. Aronow,et al.  Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. , 2007, The Journal of clinical investigation.

[9]  T. Hewett,et al.  Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. , 2007, The Journal of clinical investigation.

[10]  J. Violin,et al.  β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection , 2007 .

[11]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[12]  D. Kass,et al.  Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface , 2007, Nature Reviews Drug Discovery.

[13]  Lin Yan,et al.  Type 5 Adenylyl Cyclase Disruption Increases Longevity and Protects Against Stress , 2007, Cell.

[14]  J. Richardson,et al.  Cardiac autophagy is a maladaptive response to hemodynamic stress. , 2007, The Journal of clinical investigation.

[15]  B. Burgering,et al.  Stressing the role of FoxO proteins in lifespan and disease , 2007, Nature Reviews Molecular Cell Biology.

[16]  D. Burkhoff,et al.  Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. , 2007, Journal of the American College of Cardiology.

[17]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[18]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[19]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[20]  I. Komuro,et al.  p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload , 2007, Nature.

[21]  D. Kass,et al.  Acute phosphodiesterase 5 inhibition mimics hemodynamic effects of B-type natriuretic peptide and potentiates B-type natriuretic peptide effects in failing but not normal canine heart. , 2007, Journal of the American College of Cardiology.

[22]  W. Wurst,et al.  Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity , 2007, Nature Medicine.

[23]  Donald M. Bers,et al.  β-Adrenergic Enhancement of Sarcoplasmic Reticulum Calcium Leak in Cardiac Myocytes Is Mediated by Calcium/Calmodulin-Dependent Protein Kinase , 2007 .

[24]  Yiming Wu,et al.  Cardiac Hypertrophy and Reduced Contractility in Hearts Deficient in the Titin Kinase Region , 2007, Circulation.

[25]  K. Furie,et al.  Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. , 2007, Circulation.

[26]  D. Kass,et al.  Role of oxidative stress in cardiac hypertrophy and remodeling. , 2007, Hypertension.

[27]  O. Brodde β-adrenoceptor blocker treatment and the cardiac β-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure , 2007, Naunyn-Schmiedeberg's Archives of Pharmacology.

[28]  G. Lopaschuk,et al.  Alterations in energy metabolism in cardiomyopathies , 2007, Annals of medicine.

[29]  Y. Mori,et al.  Upregulation of TRPC1 in the development of cardiac hypertrophy. , 2006, Journal of molecular and cellular cardiology.

[30]  John McAnally,et al.  TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. , 2006, The Journal of clinical investigation.

[31]  Donald M Bers,et al.  Altered cardiac myocyte Ca regulation in heart failure. , 2006, Physiology.

[32]  M. Nishida,et al.  TRPC3 and TRPC6 are essential for angiotensin II‐induced cardiac hypertrophy , 2006, The EMBO journal.

[33]  Magdi H Yacoub,et al.  Left ventricular assist device and drug therapy for the reversal of heart failure. , 2006, The New England journal of medicine.

[34]  K. Clarke,et al.  Modification of myocardial substrate use as a therapy for heart failure , 2006, Nature Clinical Practice Cardiovascular Medicine.

[35]  J. Molkentin,et al.  Regulation of cardiac hypertrophy by intracellular signalling pathways , 2006, Nature Reviews Molecular Cell Biology.

[36]  L. Lazzeroni,et al.  A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure , 2006 .

[37]  David D Spragg,et al.  Pathobiology of left ventricular dyssynchrony and resynchronization. , 2006, Progress in cardiovascular diseases.

[38]  B. Spiegelman,et al.  Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α , 2006 .

[39]  Hyung-Suk Kim,et al.  Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. , 2006, The Journal of clinical investigation.

[40]  J. Hell,et al.  Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Schwartz,et al.  Cardiac-Specific Deletion of Gata4 Reveals Its Requirement for Hypertrophy, Compensation, and Myocyte Viability , 2006, Circulation research.

[42]  Tong Zhang,et al.  Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. , 2006, The Journal of clinical investigation.

[43]  D. Kass,et al.  Mechanisms and Use of Calcium-Sensitizing Agents in the Failing Heart , 2006, Circulation.

[44]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[45]  I. Shiojima,et al.  Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. , 2005, The Journal of clinical investigation.

[46]  H. Drexler,et al.  Many good reasons to have STAT3 in the heart. , 2005, Pharmacology & therapeutics.

[47]  M. Pericak-Vance,et al.  A Mutation in the TRPC6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2005, Science.

[48]  D. Kass,et al.  Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. , 2005, The Journal of clinical investigation.

[49]  Andrew N. Carr,et al.  Enhancement of Cardiac Function and Suppression of Heart Failure Progression By Inhibition of Protein Phosphatase 1 , 2005, Circulation research.

[50]  J. Ingwall,et al.  Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells , 2005, Nature Medicine.

[51]  Guy Salama,et al.  Calmodulin kinase II inhibition protects against structural heart disease , 2005, Nature Medicine.

[52]  K. Mani,et al.  Death begets failure in the heart. , 2005, The Journal of clinical investigation.

[53]  Jonathan Seidman,et al.  Genetic causes of human heart failure. , 2005, The Journal of clinical investigation.

[54]  D. Kass,et al.  Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy , 2005, Nature Medicine.

[55]  Paul A Bottomley,et al.  ATP flux through creatine kinase in the normal, stressed, and failing human heart. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Masahiko Hoshijima,et al.  Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. , 2004, Journal of the American College of Cardiology.

[57]  E. Olson,et al.  Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress , 2004, Nature Medicine.

[58]  Ralph D'Agostino,et al.  Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. , 2004, The New England journal of medicine.

[59]  N. Dalton,et al.  Intracoronary Adenovirus Encoding Adenylyl Cyclase VI Increases Left Ventricular Function in Heart Failure , 2004, Circulation.

[60]  Yiming Wu,et al.  Altered Titin Expression, Myocardial Stiffness, and Left Ventricular Function in Patients With Dilated Cardiomyopathy , 2004, Circulation.

[61]  Shi-Xian Deng,et al.  Protection from Cardiac Arrhythmia Through Ryanodine Receptor-Stabilizing Protein Calstabin2 , 2004, Science.

[62]  J. McMurray,et al.  Targeted Anticytokine Therapy in Patients With Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL) , 2004, Circulation.

[63]  T. Hewett,et al.  PKC-α regulates cardiac contractility and propensity toward heart failure , 2004, Nature Medicine.

[64]  Masaru Sugimachi,et al.  Vagal Nerve Stimulation Markedly Improves Long-Term Survival After Chronic Heart Failure in Rats , 2003, Circulation.

[65]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[66]  R. Kitsis,et al.  A mechanistic role for cardiac myocyte apoptosis in heart failure. , 2003, The Journal of clinical investigation.

[67]  Y. Ahn,et al.  Nuclear Targeting of Akt Enhances Kinase Activity and Survival of Cardiomyocytes , 2003, Circulation research.

[68]  E. Lakatta,et al.  Sex- and age-dependent human transcriptome variability: Implications for chronic heart failure , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Masahiko Hoshijima,et al.  The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy , 2002, Cell.

[70]  S. Kardia,et al.  Synergistic Polymorphisms of β1- and α2C-Adrenergic Receptors and the Risk of Congestive Heart Failure , 2002 .

[71]  M. Yano,et al.  FKBP12.6-Mediated Stabilization of Calcium-Release Channel (Ryanodine Receptor) as a Novel Therapeutic Strategy Against Heart Failure , 2002, Circulation.

[72]  Chun Li Zhang,et al.  Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy , 2002, Cell.

[73]  P. Herrero,et al.  Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. , 2002, Journal of the American College of Cardiology.

[74]  R. Quaife,et al.  Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. , 2002, The New England journal of medicine.

[75]  J. Oss,et al.  PROPHYLACTIC IMPLANTATION OF A DEFIBRILLATOR IN PATIENTS WITH MYOCARDIAL INFARCTION AND REDUCED EJECTION FRACTION , 2002 .

[76]  E. Olson,et al.  Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. Chien,et al.  Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes , 2001, Nature Medicine.

[78]  R. Xiao β-Adrenergic Signaling in the Heart: Dual Coupling of the β2-Adrenergic Receptor to Gs and Gi Proteins , 2001, Science's STKE.

[79]  D. Kass,et al.  The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Robbins,et al.  The Tumor Suppressor Gene PTEN Can Regulate Cardiac Hypertrophy and Survival* , 2001, The Journal of Biological Chemistry.

[81]  D. DeMets,et al.  Effect of carvedilol on survival in severe chronic heart failure. , 2001, The New England journal of medicine.

[82]  E. Olson,et al.  Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[83]  D. Burkhoff,et al.  Chronic Unloading by Left Ventricular Assist Device Reverses Contractile Dysfunction and Alters Gene Expression in End-Stage Heart Failure , 2000, Circulation.

[84]  E. Olson,et al.  Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation , 2000, Nature.

[85]  J. Saffitz,et al.  Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. , 2000, The Journal of clinical investigation.

[86]  B. Pitt,et al.  The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure , 2000 .

[87]  D. Burkhoff,et al.  PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor) Defective Regulation in Failing Hearts , 2000, Cell.

[88]  R. Lefkowitz,et al.  Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction , 2000 .

[89]  G. Dorn,et al.  Polymorphisms of the β2-Adrenergic Receptor Determine Exercise Capacity in Patients With Heart Failure , 2000 .

[90]  Rick B. Vega,et al.  The Coactivator PGC-1 Cooperates with Peroxisome Proliferator-Activated Receptor α in Transcriptional Control of Nuclear Genes Encoding Mitochondrial Fatty Acid Oxidation Enzymes , 2000, Molecular and Cellular Biology.

[91]  J. Guerrero,et al.  Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[92]  B. Pitt,et al.  The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. , 1999, The New England journal of medicine.

[93]  T. McIntosh,et al.  The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. , 1998, The Journal of clinical investigation.

[94]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.

[95]  B. Groves,et al.  Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. , 1997, The Journal of clinical investigation.

[96]  E. J. Brown,et al.  Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. , 1992, The New England journal of medicine.

[97]  D. DeMets,et al.  Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. , 1991, The New England journal of medicine.

[98]  J. Lutz A XII century description of congestive heart failure. , 1988, The American journal of cardiology.

[99]  J. Cohn,et al.  Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. , 1984, The New England journal of medicine.

[100]  M. Pericak-Vance,et al.  A Mutation in the TRPC 6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2008 .

[101]  F. Hofmann,et al.  Function of cGMP-dependent protein kinases as revealed by gene deletion. , 2006, Physiological reviews.

[102]  H. Granzier,et al.  The Giant Protein Titin A Major Player in Myocardial Mechanics , Signaling , and Disease , 2004 .

[103]  J. Sadoshima,et al.  Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. , 2002, Circulation research.

[104]  R. Xiao β-Adrenergic Signaling in the Heart : Dual Coupling of the β 2-Adrenergic Receptor to Gs and Gi Proteins , 2022 .