Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition

The customer relationship management allocation in marketing budgets is potentially misleading when it uses individual customer lifetime value estimations from historical data. Planned marketing interventions would change the purchasing behavior of different customers, and history-based decisions would thus be suboptimal. To cope with this inherent endogeneity, we model the optimal allocation of the marketing mix by accounting simultaneously for mass interventions and direct marketing interventions for each customer. This is a large stochastic dynamic problem that, in general, is computationally rather intractable as a result of the "curse of dimensionality." We present an algorithm to derive the optimal marketing policies how the firm should allocate its marketing resources and the expected present value of those decisions, which maximize the long-term profitability of firms. This allows the firm to value customers/segments and helps the firm to target those that maximize long-term profitability given the optimal marketing resources allocation. We apply the proposed approach in the context of a kitchen appliance manufacturer. The results identify the most effective marketing policies and the endogenous customer values. It is in this context that we also dynamically identify the most profitable customer and the short-and long-term effects of marketing activities on each customer.

[1]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[2]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[3]  R. Bellman FUNCTIONAL EQUATIONS IN THE THEORY OF DYNAMIC PROGRAMMING. V. POSITIVITY AND QUASI-LINEARITY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Puterman,et al.  Modified Policy Iteration Algorithms for Discounted Markov Decision Problems , 1978 .

[5]  Robert A. Peterson,et al.  Customer Base Analysis: An Industrial Purchase Process Application , 1994 .

[6]  K. Judd Numerical methods in economics , 1998 .

[7]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[8]  J. P. Rincón-Zapatero,et al.  Existence and Uniqueness of Solutions to the Bellman Equation in the Unbounded Case , 2003 .

[9]  D. Peppers,et al.  Is your company ready for one-to-one marketing? , 1999, Harvard business review.

[10]  Andrzej Ruszczynski,et al.  On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization , 1995, Math. Oper. Res..

[11]  Venkatesh Shankar Strategic Allocation of Marketing Resources: Methods and Managerial Insights , 2008 .

[12]  Ricardo Montoya,et al.  Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability , 2010, Mark. Sci..

[13]  M. Arellano,et al.  Another look at the instrumental variable estimation of error-components models , 1995 .

[14]  Michael Lewis,et al.  Research Note: A Dynamic Programming Approach to Customer Relationship Pricing , 2005, Manag. Sci..

[15]  D. Collings,et al.  Valuing customers , 2005 .

[16]  D. Blackwell Discounted Dynamic Programming , 1965 .

[17]  Jose M. Vidal-Sanz,et al.  The value of a "free" customer , 2009 .

[18]  Katherine N. Lemon,et al.  Return on Marketing: Using Customer Equity to Focus Marketing Strategy , 2004 .

[19]  Carl F. Mela,et al.  Choice Models and Customer Relationship Management , 2005 .

[20]  Stephen M. Robinson,et al.  Scenario analysis via bundle decomposition , 1995, Ann. Oper. Res..

[21]  Atul Parvatiyar,et al.  Handbook of Relationship Marketing , 1999 .

[22]  Daniel Adelman,et al.  Relaxations of Weakly Coupled Stochastic Dynamic Programs , 2008, Oper. Res..

[23]  Warren B. Powell,et al.  “Approximate dynamic programming: Solving the curses of dimensionality” by Warren B. Powell , 2007, Wiley Series in Probability and Statistics.

[24]  Frenkel Ter Hofstede,et al.  How to Compute Optimal Catalog Mailing Decisions , 2006 .

[25]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[26]  Cheng Hsiao,et al.  Formulation and estimation of dynamic models using panel data , 1982 .

[27]  Robert W. Shoemaker,et al.  The Effects of a Direct Mail Coupon on Brand Choice Behavior , 1987 .

[28]  T. Sargent,et al.  Recursive Macroeconomic Theory , 2000 .

[29]  Donald R. Lehmann,et al.  Customer Lifetime Value and Firm Valuation , 2006 .

[30]  David A. Marshall,et al.  Convergence of approximate model solutions to rational expectation equilibria using the method of parameterized expectations , 1992 .

[31]  Kamel Jedidi,et al.  Dynamic Marketing Mix Allocation for Long-Term Profitability , 2008 .

[32]  Sunil Gupta,et al.  Managing Customers as Investments: The Strategic Value of Customers in the Long Run , 2005 .

[33]  Jagdish N. Sheth,et al.  RELATIONSHIP MARKETING IN MASS MARKETS , 2005 .

[34]  W. Reinartz,et al.  Balancing Acquisition and Retention Resources to Maximize Customer Profitability , 2005 .

[35]  Xiaohong Chen,et al.  The Estimation of Conditional Densities , 2001 .

[36]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[37]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[38]  George Tauchen,et al.  Finite state markov-chain approximations to univariate and vector autoregressions , 1986 .

[39]  Warren B. Powell,et al.  Approximate Dynamic Programming Captures Fleet Operations for Schneider National , 2010, Interfaces.

[40]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[41]  G. Roussas Nonparametric Estimation of the Transition Distribution Function of a Markov Process , 1969 .

[42]  Csaba Szepesvári,et al.  Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path , 2006, Machine Learning.

[43]  Martin L. Puterman,et al.  On the Convergence of Policy Iteration in Stationary Dynamic Programming , 1979, Math. Oper. Res..

[44]  Hairul Azlan Annuar,et al.  Foreign investors' interests and corporate tax avoidance: Evidence from an emerging economy , 2015 .

[45]  Sunil Gupta,et al.  Valuing customers , 2007 .

[46]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[47]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[48]  R. Bellman Dynamic programming. , 1957, Science.

[49]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[50]  Warren B. Powell,et al.  An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application , 2009, Transp. Sci..

[51]  Barton A. Weitz,et al.  Handbook of marketing , 2002 .

[52]  Susana V. Mondschein,et al.  Mailing Decisions in the Catalog Sales Industry , 1996 .

[53]  John Rust Using Randomization to Break the Curse of Dimensionality , 1997 .

[54]  R. Rust,et al.  Optimizing the Marketing Interventions Mix in Intermediate-Term CRM , 2005 .

[55]  Sunil Gupta,et al.  Allocating Marketing Resources , 2008 .

[56]  Lluís G. Renart Handbook of Relationship Marketing , 2013 .

[57]  Manuel S. Santos,et al.  Accuracy of simulations for stochastic dynamic models , 2005 .

[58]  Donald R. Lehmann,et al.  From Decision Support to Decision Automation: A 2020 Vision , 1998 .

[59]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[60]  Warren B. Powell,et al.  Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics) , 2007 .

[61]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[62]  Sunil Gupta,et al.  Customer Metrics and Their Impact on Financial Performance , 2006 .

[63]  William J. McDonald Direct Marketing: An Integrated Approach , 1998 .

[64]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[65]  John N. Tsitsiklis,et al.  Dynamic Catalog Mailing Policies , 2006, Manag. Sci..

[66]  Romana Khan,et al.  Dynamic Customer Management and the Value of One-to-One Marketing , 2009, Mark. Sci..

[67]  R. Blundell,et al.  Initial Conditions and Moment Restrictions in Dynamic Panel Data Models , 1998 .

[68]  Xi Chen,et al.  Quantitative models for direct marketing: A review from systems perspective , 2009, Eur. J. Oper. Res..

[69]  Tuck Siong Chung,et al.  Marketing Models of Service and Relationships , 2006 .

[70]  Sunil Gupta,et al.  Customers as assets , 2003 .

[71]  G. Roussas Nonparametric estimation in Markov processes , 1969 .

[72]  John Rust,et al.  Convergence Properties of Policy Iteration , 2003, SIAM J. Control. Optim..

[73]  E. Denardo CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .

[74]  Füsun F. Gönül,et al.  Optimal Mailing of Catalogs: a New Methodology Using Estimable Structural Dynamic Programming Models , 1998 .

[75]  Rajkumar Venkatesan,et al.  A Customer Lifetime Value Framework for Customer Selection and Resource Allocation Strategy , 2004 .

[76]  L. Berry Relationship marketing of services—growing interest, emerging perspectives , 1995 .

[77]  Peter E. Rossi,et al.  The Value of Purchase History Data in Target Marketing , 1996 .

[78]  Jeremy T. Fox,et al.  Recent Advances in Structural Econometric Modeling: Dynamics, Product Positioning and Entry , 2005 .