Ro-vibrational Raman Cross Sections of Water Vapor in the OH Stretching Region.

The Raman spectrum of H2O, in the gas phase at 26 mbar and 295 K, has been recorded from 3400 to 4130 cm-1 using an improved spectrometer of very high sensitivity. This spectrum is analyzed in terms of the wavefunctions and energy levels of Flaud and Camy-Peyret [J. Mol. Spectrosc. 51, 142 (1974)], and of the polarizability derivatives with respect to the dimensionless normal coordinates q1 and q3. It is shown that the anharmonic coupling between the vibrational states nu1 and nu3 has to be considered for a correct simulation of the observed spectrum. Tables with scattering strengths and energies of ro-vibrational transitions are provided in order to simulate the Raman spectrum of water vapor over a broad range of temperatures, from few Kelvin, under supersonic expansions, to high temperature, in combustion processes. Copyright 1999 Academic Press.

[1]  Carl M. Penney,et al.  Raman-scattering cross sections for water vapor , 1976 .

[2]  W. Murphy Intensities of rotation and vibration-rotation Raman transitions in asymmetric top molecules† , 1981 .

[3]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[4]  S. Brodersen,et al.  Raman spectroscopy of gases and liquids , 1979 .

[5]  Salvador Montero,et al.  Raman intensities of ethane and deuterated derivatives , 1984 .

[6]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[7]  W. Murphy,et al.  The ro-vibrational Raman spectrum of water vapour υ2 and 2υ2 , 1977 .

[8]  W. Murphy,et al.  The rovibrational Raman spectrum of water vapour v 1 and v 3 , 1978 .

[9]  D. Greenhalgh,et al.  High-resolution inverse Raman spectroscopy of the ν1 band of water vapor , 1986 .

[10]  W. Murphy,et al.  Raman scattering cross sections and polarizability derivatives of H2S, D2S, and HDS☆ , 1992 .

[11]  J. Flaud,et al.  The interacting states (020), (100), and (001) of H216O , 1974 .

[12]  J. Flaud,et al.  The 2v 2, v 1 and v 3 bands of H2 16O , 1973 .

[13]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[14]  S. Rosenwaks,et al.  Coherent Anti-Stokes Raman Spectroscopy of the Stretching Vibrations of the Water Isotopomers , 1992 .

[15]  K. Altmann,et al.  Application of spherical tensors and Wigner 3-j-symbols to the calculation of relative intensities of rotational lines in Raman bands of molecular gases , 1972 .

[16]  J. Koningstein Introduction to the Theory of the Raman Effect , 1972 .

[17]  M. Hemert,et al.  Ab initio calculations of Raman intensities; analysis of the bond polarizability approach and the atom dipole interaction model , 1981 .

[18]  Пётр Петрович Лазарев Handbuch der Radiologie , 1915 .

[19]  F. W. Birss Vibration-rotation operators of the form q 2 J 2 , 1976 .

[20]  D. Greenhalgh,et al.  Temperature and pressure dependence of the ν1 band of water vapour by high-resolution inverse Raman spectroscopy , 1990 .

[21]  K. N. Marsh,et al.  Recommended reference materials for the realization of physicochemical properties , 1987 .

[22]  J. Flaud,et al.  Vibration-rotation intensities in H2O-type molecules application to the 2nu2, nu1, and nu3 bands of H216O , 1975 .

[23]  N. Hush,et al.  Finite field method calculations. V. Raman scattering activities and infrared absorption intensities for H2O, D2O, CH4 and CD4 , 1979 .

[24]  D. Papoušek,et al.  Molecular vibrational-rotational spectra , 1982 .

[25]  G. Tejeda,et al.  High-Performance Dual Raman Spectrometer , 1997 .

[26]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[27]  N. Hush,et al.  Finite field method calculations. VI. Raman scatering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculations for CH4 , 1980 .