Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence

We revisit Zadeh's notion of "evidence of the second kind" and show that it provides the foundation for a general theory of epistemic random fuzzy sets, which generalizes both the Dempster-Shafer theory of belief functions and possibility theory. In this perspective, Dempster-Shafer theory deals with belief functions generated by random sets, while possibility theory deals with belief functions induced by fuzzy sets. The more general theory allows us to represent and combine evidence that is both uncertain and fuzzy. We demonstrate the application of this formalism to statistical inference, and show that it makes it possible to reconcile the possibilistic interpretation of likelihood with Bayesian inference.

[1]  Thierry Denoeux,et al.  Handling possibilistic labels in pattern classification using evidential reasoning , 2001, Fuzzy Sets Syst..

[2]  Thierry Denux,et al.  Likelihood-based belief function: Justification and some extensions to low-quality data , 2014, Int. J. Approx. Reason..

[3]  Arthur P. Dempster,et al.  The Dempster-Shafer calculus for statisticians , 2008, Int. J. Approx. Reason..

[4]  Ryan Martin,et al.  False confidence, non-additive beliefs, and valid statistical inference , 2016, Int. J. Approx. Reason..

[5]  G. Shafer Constructive probability , 2005, Synthese.

[6]  Didier Dubois,et al.  Representations of Uncertainty in Artificial Intelligence: Probability and Possibility , 2020, A Guided Tour of Artificial Intelligence Research.

[7]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[8]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[9]  Thierry Denoeux,et al.  Identification of elastic properties in the belief function framework , 2018, Int. J. Approx. Reason..

[10]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[11]  R. Kruse,et al.  Statistics with vague data , 1987 .

[12]  D. Dubois,et al.  A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .

[13]  Thierry Denoeux,et al.  Forecasting using belief functions: An application to marketing econometrics , 2014, Int. J. Approx. Reason..

[14]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[15]  Ronald R. Yager,et al.  Generalized probabilities of fuzzy events from fuzzy belief structures , 1982, Inf. Sci..

[16]  John Yen,et al.  Generalizing the Dempster-Schafer theory to fuzzy sets , 1990, IEEE Trans. Syst. Man Cybern..

[17]  Mitsuru Ishizuka,et al.  Inference procedures under uncertainty for the problem-reduction method , 1982, Inf. Sci..

[18]  Didier Dubois,et al.  Merging Fuzzy Information , 1999 .

[19]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[20]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[21]  Thierry Denoeux,et al.  Frequency-calibrated belief functions: Review and new insights , 2018, Int. J. Approx. Reason..

[22]  Thierry Denoeux,et al.  A Fuzzy-neuro system for reconstruction of multi-sensor information , 1998 .

[23]  Hung T. Nguyen,et al.  Possibility Theory, Probability and Fuzzy Sets Misunderstandings, Bridges and Gaps , 2000 .

[24]  T. Denœux Modeling vague beliefs using fuzzy-valued belief structures , 2000 .

[25]  Didier Dubois,et al.  Joint propagation of probability and possibility in risk analysis: Towards a formal framework , 2007, Int. J. Approx. Reason..

[26]  Hung T. Nguyen,et al.  On Random Sets and Belief Functions , 1978, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[27]  Ronald R. Yager,et al.  On the normalization of fuzzy belief structures , 1996, Int. J. Approx. Reason..

[28]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[29]  Thierry Denoeux,et al.  Multistep Prediction using Point-Cloud Approximation of Continuous Belief Functions , 2019, 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[30]  Inés Couso,et al.  Upper and lower probabilities induced by a fuzzy random variable , 2011, Fuzzy Sets Syst..

[31]  Thierry Denoeux,et al.  Regression analysis using fuzzy evidence theory. , 1999 .

[32]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  Mikel Aickin,et al.  Connecting Dempster–Shafer Belief Functions with Likelihood-based Inference , 2000, Synthese.

[34]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[35]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[36]  D. Dubois,et al.  Fuzzy Sets: History and Basic Notions , 2000 .

[37]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[38]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[39]  Didier Dubois,et al.  Evidence measures based on fuzzy information , 1985, Autom..

[40]  Michael Scott Balch,et al.  Mathematical foundations for a theory of confidence structures , 2012, Int. J. Approx. Reason..

[41]  Inés Couso,et al.  Higher order models for fuzzy random variables , 2008, Fuzzy Sets Syst..

[42]  Chuanhai Liu,et al.  Inferential Models: Reasoning with Uncertainty , 2015 .

[43]  Philippe Smets,et al.  The degree of belief in a fuzzy event , 1981, Inf. Sci..

[44]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[45]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[46]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[47]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[48]  Arthur P. Dempster,et al.  New Methods for Reasoning Towards PosteriorDistributions Based on Sample Data , 1966, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[49]  T. Denœux Constructing belief functions from sample data using multinomial confidence regions , 2006 .

[50]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[51]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[52]  Peter Walley,et al.  Belief Function Representations of Statistical Evidence , 1987 .

[53]  Thierry Denoeux,et al.  Prediction of future observations using belief functions: A likelihood-based approach , 2016, Int. J. Approx. Reason..

[54]  John Yen,et al.  Generalizing the Dempster-Schafer theory to fuzzy sets , 1990, IEEE Trans. Syst. Man Cybern..