Binding of a pair of Au nanoparticles in a wide Gaussian standing wave

We present theoretical results related to the optical binding of two nanoparticles (NPs) in a standing wave created by a retro-reflected wide Gaussian beam. Recent experimental results demonstrated that this geometry enables easy confinement and spatial self-arrangement of NPs. Since the NPs are not usually of the same size, we investigate the influence of variations in NPs size on their stable spatial confinement in this type of optical trap.

[1]  T. Walker,et al.  Light torque nanocontrol, nanomotors and nanorockers. , 2002, Optics express.

[2]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[3]  N. Scherer,et al.  Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. , 2012, ACS nano.

[4]  Lukas Novotny,et al.  Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. , 2014, Physical review letters.

[5]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.

[6]  D. Janzing,et al.  A single-shot measurement of the energy of product states in a translation invariant spin chain can replace any quantum computation , 2007, 0710.1615.

[7]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[8]  Oto Brzobohatý,et al.  Dynamic size tuning of multidimensional optically bound matter , 2011 .

[9]  Romain Quidant,et al.  Surface‐plasmon‐based optical manipulation , 2008 .

[10]  Hiroshi Masuhara,et al.  Laser manipulation and fixation of single gold nanoparticles in solution at room temperature , 2002 .

[11]  Zijie Yan,et al.  Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. , 2013, ACS nano.

[12]  J. Hotta,et al.  Analysis of radiation pressure exerted on a metallic particle within an evanescent field. , 2000, Optics letters.

[13]  David Grier,et al.  Processing carbon nanotubes with holographic optical tweezers. , 2004, Optics express.

[14]  J Dilling,et al.  First use of high charge states for mass measurements of short-lived nuclides in a Penning trap. , 2011, Physical review letters.

[15]  Lambertus Hesselink,et al.  Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps. , 2014, Nano letters.

[16]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[17]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[18]  Ernst-Ludwig Florin,et al.  Ultrastrong optical binding of metallic nanoparticles. , 2012, Nano letters.

[19]  Pavel Zemánek,et al.  Optical forces acting on Rayleigh particle placed into interference field , 2004 .

[20]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[21]  K Dholakia,et al.  Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. , 2007, Physical review letters.

[22]  Hiroshi Masuhara,et al.  Optical trapping of a metal particle and a water droplet by a scanning laser beam , 1992 .

[23]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[24]  Gérard Gouesbet,et al.  Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams , 1994 .

[25]  O. Brzobohatý,et al.  Static and dynamic behavior of two optically bound microparticles in a standing wave. , 2011, Optics express.

[26]  Oto Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a /`tractor beam/' , 2013 .

[27]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[28]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[29]  Zijie Yan,et al.  Why single-beam optical tweezers trap gold nanowires in three dimensions. , 2013, ACS nano.

[30]  M. Šiler,et al.  Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery , 2006 .

[31]  Kishan Dholakia,et al.  Optical vortex trap for resonant confinement of metal nanoparticles. , 2008, Optics express.

[32]  Zach DeVito,et al.  Opt , 2017 .

[33]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[34]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[35]  Hiroshi Masuhara,et al.  Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[37]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[38]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[39]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Pavel Zemánek,et al.  Metallic nanoparticles in a standing wave: Optical force and heating , 2013 .

[41]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[42]  Mikael Käll,et al.  Ultrafast spinning of gold nanoparticles in water using circularly polarized light. , 2013, Nano letters.

[43]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[44]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[45]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[46]  T. Čižmár,et al.  Bidirectional optical sorting of gold nanoparticles. , 2012, Nano letters.

[47]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[48]  J. C. Cezar,et al.  Valence, spin, and orbital state of Co ions in one-dimensional Ca3Co2O6 : An x-ray absorption and magnetic circular dichroism study , 2006 .

[49]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[50]  Christopher D. Mellor,et al.  Polarization effects in optically bound particle arrays. , 2006, Optics express.

[51]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[52]  W. J. Toe,et al.  Resolving stable axial trapping points of nanowires in an optical tweezers using photoluminescence mapping. , 2013, Nano letters.

[53]  T Čižmár,et al.  Experimental and theoretical determination of optical binding forces. , 2010, Optics express.

[54]  Oto Brzobohatý,et al.  Longitudinal optical binding of several spherical particles studied by the coupled dipole method , 2009 .

[55]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[56]  Ping Sheng,et al.  Photonic clusters formed by dielectric microspheres : Numerical simulations , 2005, cond-mat/0501733.

[57]  Pavel Zemánek,et al.  Theoretical comparison of optical traps created by standing wave and single beam , 2003 .