The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations
暂无分享,去创建一个
[1] J. Kingman. Random Discrete Distributions , 1975 .
[2] J. Kingman. The population structure associated with the Ewens sampling formula. , 1977, Theoretical population biology.
[3] A. Odlyzko,et al. Random Shuffles and Group Representations , 1985 .
[4] P. Diaconis. Group representations in probability and statistics , 1988 .
[5] P. Diaconis,et al. Eigen Analysis for Some Examples of the Metropolis Algorithm , 1992 .
[6] N. Tsilevich. Stationary Random Partitions of Positive Integers , 2000 .
[7] O. Zeitouni,et al. Asymptotics of Certain Coagulation-Fragmentation Processes and Invariant Poisson-Dirichlet Measures , 2001, math/0105111.
[8] Alex Gamburd,et al. On the Genus of a Random Riemann Surface , 2001, math/0104038.
[10] N. Tsilevich. On the simplest split-merge operator on the infinite-dimensional simplex , 2001, math/0106005.
[11] Alexander Gnedin,et al. A Characterization of GEM Distributions , 2001, Combinatorics, Probability and Computing.
[12] Eran Makover,et al. Belyi Surfaces , 2001 .
[13] Jim Pitman,et al. Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge Transformations of an Interval Partition , 2002, Combinatorics, Probability and Computing.
[14] Alexander Gnedin,et al. Fibonacci solitaire , 2002, Random Struct. Algorithms.
[15] R. Arratia,et al. Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .