Selective Synthesis of Bi2Te3/WS2 Heterostructures with Strong Interlayer Coupling.

The vertical integration of atomically thin layered materials to create van der Waals heterostructures (VdWHs) has been proposed as a method to design nanostructures with emergent properties. In this work, epitaxial Bi2Te3/WS2 VdWHs are synthesized via a two-step vapor deposition process. It is calculated that the VdWH has an indirect band gap with a valence band edge that bridges the VdW gap, resulting in a quenched photoluminescence (PL) from the WS2 monolayer, reduced intensity of its resonance Raman vibrational peaks, improved vertical charge transport, and a decrease in the intensity of second harmonic generation (SHG). Furthermore, it is observed that induced defects strongly influence the nucleation and growth of VdWHs. By creating point defects in WS2 monolayers, it is shown that the growth of Bi2Te3 platelets can be patterned. This work offers important insights into the synthesis, defect engineering, and moiré engineering of an emerging class of 2D heterostructures.

[1]  M. Terrones,et al.  Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic Resolution Characterizations , 2019, ACS Applied Nano Materials.

[2]  S. Kar,et al.  Probing the interlayer interaction between dissimilar 2D heterostructures by in situ rearrangement of their interface , 2019, 2D Materials.

[3]  J. Robinson,et al.  Oxygen-Induced In Situ Manipulation of the Interlayer Coupling and Exciton Recombination in Bi2Se3/MoS2 2D Heterostructures. , 2019, ACS applied materials & interfaces.

[4]  A. Pasupathy,et al.  Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides , 2018, Chemistry of Materials.

[5]  Yung‐Chang Lin,et al.  Selective Growth of Two-Dimensional Heterostructures of Gallium Selenide on Monolayer Graphene and the Thickness Dependent p- and n-Type Nature , 2018 .

[6]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[7]  S. Fullerton‐Shirey,et al.  Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostructures , 2017 .

[8]  J. Zhong,et al.  Significant photoluminescence quenching and charge transfer in the MoS2/Bi2Te3 heterostructure , 2017, Journal of Physics and Chemistry of Solids.

[9]  S. Banerjee,et al.  Versatile Large-Area Custom-Feature van der Waals Epitaxy of Topological Insulators. , 2017, ACS nano.

[10]  Guowei Yang,et al.  All‐Layered 2D Optoelectronics: A High‐Performance UV–vis–NIR Broadband SnSe Photodetector with Bi2Te3 Topological Insulator Electrodes , 2017 .

[11]  C. Lane,et al.  Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers , 2017, Science Advances.

[12]  Brian M. Bersch,et al.  Selective-area growth and controlled substrate coupling of transition metal dichalcogenides , 2017 .

[13]  Jinxiong Wu,et al.  Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. , 2016, ACS nano.

[14]  G. Duscher,et al.  Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. , 2016, ACS nano.

[15]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[16]  T. Mallouk,et al.  Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS_2 monolayers produced by different growth methods , 2016 .

[17]  M. Dresselhaus,et al.  Parallel Stitching of 2D Materials , 2015, Advanced materials.

[18]  L. Chu,et al.  Halide-Assisted Atmospheric Pressure Growth of Large WSe2 and WS2 Monolayer Crystals , 2015, 1509.00555.

[19]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[20]  Wei Jiang,et al.  Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors , 2015, Nature Communications.

[21]  Hiroki Hibino,et al.  Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. , 2015, ACS nano.

[22]  Bin Yu,et al.  Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. , 2015, ACS nano.

[23]  Caiyun Chen,et al.  Broadband photodetectors based on graphene-Bi2Te3 heterostructure. , 2015, ACS Nano.

[24]  Moon J. Kim,et al.  Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.

[25]  J. Arbiol,et al.  Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates , 2014, Nano Research.

[26]  Zhiwen Liu,et al.  Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers , 2014, Scientific Reports.

[27]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[28]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[29]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[30]  Andres Castellanos-Gomez,et al.  The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 , 2013, Nano Research.

[31]  Zhongfan Liu,et al.  Selective‐Area Van der Waals Epitaxy of Topological Insulator Grid Nanostructures for Broadband Transparent Flexible Electrodes , 2013, Advanced materials.

[32]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[33]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[34]  C. C. Wang,et al.  In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness , 2013, Nano Research.

[35]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[36]  K. Tsukagoshi,et al.  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[37]  W. Dang,et al.  Topological insulator nanostructures for near-infrared transparent flexible electrodes. , 2012, Nature chemistry.

[38]  W. Dang,et al.  Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. , 2010, Nano letters.

[39]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[40]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[42]  H. Cui,et al.  Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry , 1999 .

[43]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[44]  R. F. Brebrick,et al.  Partial and Total Vapor Pressures over Molten Bi2Te3 , 1971 .

[45]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.