Peakedness Effects in Near-Nadir Radar Observations of the Sea Surface

The simulation and interpretation of microwave sea radar return in the near-nadir region are still issues in view of the limitations of the geometrical optics approximation and the multiscale and non-Gaussian nature of the surface. We show that an unambiguous and fully consistent physical approach can be reached in the framework of the physical optics. The model is developed on the basis of various satellite and airborne C-, Ku-, and Ka-band measurements using different reference surface roughness spectra. As found, the introduction of a peakedness correction based upon the excess kurtosis of slopes is necessary to obtain consistent analysis across the microwave frequency range. The model yields accurate simulations for the omnidirectional near-nadir normalized radar cross section in different frequency bands, provided the spectrum satisfies some a priori constraints on the distribution of the total and filtered slopes.

[1]  Iosif M. Fuks Backscattering from a statistically rough 2‐D surface: Diffraction corrections to geometrical optics cross sections , 2007 .

[2]  Bertrand Chapron,et al.  A two-parameter wind speed algorithm for Ku-band altimeters , 2002 .

[3]  J. Johannessen,et al.  On radar imaging of current features: 1. Model and comparison with observations , 2005 .

[4]  Sean P. Burns,et al.  Measuring sea surface mean square slope with a 36-GHz scanning , 1998 .

[5]  V. I. Tatarskii,et al.  Statistical Non-Gaussian Model of Sea Surface with Anisotropic Spectrum for Wave Scattering Theory. Part II , 1999 .

[6]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[7]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[8]  James L. Garrison,et al.  An improved geometrical optics model for bistatic GPS scattering from the ocean surface , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Harald Johnsen,et al.  Sea-Surface Polarization Ratio From Envisat ASAR AP Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Maurizio di Bisceglie,et al.  Simulation of L-Band Bistatic Returns From the Ocean Surface: A Facet Approach With Application to Ocean GNSS Reflectometry , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Bertrand Chapron,et al.  Effect of Long Waves on Ku-Band Ocean Radar Backscatter at Low Incidence Angles Using TRMM and Altimeter Data , 2007, IEEE Geoscience and Remote Sensing Letters.

[12]  Charles-Antoine Guérin,et al.  Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent , 2001 .

[13]  Paul A. Hwang Comment on “A study of the slope probability density function of the ocean waves from radar observations” by D. Hauser et al. , 2009 .

[14]  Bertrand Chapron,et al.  Importance of peakedness in sea surface slope measurements and applications , 2000 .

[15]  V. Dulov,et al.  Extraction of short wind wave spectra from stereo images of the sea surface , 2010 .

[16]  C. Guérin,et al.  A critical survey of approximate scattering wave theories from random rough surfaces , 2004 .

[17]  K. Katsaros,et al.  A Unified Directional Spectrum for Long and Short Wind-Driven Waves , 1997 .

[18]  Bertrand Chapron,et al.  Ocean wave spectrum and radar cross-section analysis from coincident ENVISAT ASAR observations and airborne polarimetric radar measurements performed during the VALPARESO experiment , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[19]  Christine Gommenginger,et al.  A parametric model for ocean wave period from Ku band altimeter data , 2008 .

[20]  A. Voronovich,et al.  Theoretical model for scattering of radar signals in K u - and C-bands from a rough sea surface with breaking waves , 2001 .

[21]  Estel Cardellach,et al.  A new technique to sense non-Gaussian features of the sea surface from L-band bi-static GNSS reflections , 2008 .

[22]  Bertrand Chapron,et al.  The Southern Ocean Waves Experiment. Part III: Sea Surface Slope Statistics and Near-Nadir Remote Sensing , 2008 .

[23]  Iosif M. Fuks,et al.  Diffraction corrections to GO backscattering from a perfectly conducting 3‐D rough surface , 2008 .

[24]  V. I. Tatarskii,et al.  Statistical non-Gaussian model of sea surface with anisotropic spectrum for wave scattering theory. Part I - Abstract , 1999 .

[25]  F. Bréon,et al.  Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions , 2006 .

[26]  Adrian K. Fung,et al.  Kirchhoff Model for a Skewed Random Surface , 1991 .

[27]  Charles-Antoine Guérin,et al.  A Cutoff Invariant Two-Scale Model in Electromagnetic Scattering From Sea Surfaces , 2008, IEEE Geoscience and Remote Sensing Letters.

[28]  Alexis Mouche,et al.  A study of the slope probability density function of the ocean waves from radar observations , 2008 .

[29]  Valery U. Zavorotny,et al.  Scattering of GPS signals from the ocean with wind remote sensing application , 2000, IEEE Trans. Geosci. Remote. Sens..

[30]  Alexis Mouche,et al.  Reply to comment by Paul A. Hwang on ``A study of the slope probability density function of the ocean waves from radar observations'' by D. Hauser et al. , 2009 .

[31]  Kun-Shan Chen,et al.  An empirical bispectrum model for sea surface scattering , 1993, IEEE Trans. Geosci. Remote. Sens..

[32]  Bertrand Chapron,et al.  The weighted curvature approximation in scattering from sea surfaces , 2010 .

[33]  Bertrand Chapron,et al.  Ocean Wave Slope Observations Using Radar Backscatter and Laser Altimeters , 2004 .

[34]  Bertrand Chapron,et al.  A simplified asymptotic theory for ocean surface electromagnetic wave scattering , 2007 .

[35]  J. Crease The Dynamics of the Upper Ocean , 1967 .

[36]  Charles-Antoine Guérin,et al.  Higher‐order statistical analysis of short wind wave fields , 2012 .

[37]  D. E. Hines,et al.  Sea surface mean square slope from K u ‐band backscatter data , 1992 .

[38]  Bertrand Chapron,et al.  Scattering From Nonlinear Gravity Waves: The “Choppy Wave” Model , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Bertrand Chapron,et al.  Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves , 1999 .

[40]  K. Warnick,et al.  Physical and geometrical optics for 2-D rough surfaces with power-law height spectra , 2005, IEEE Transactions on Antennas and Propagation.

[41]  G. Valenzuela Theories for the interaction of electromagnetic and oceanic waves — A review , 1978 .

[42]  N. Reul,et al.  Importance of the sea surface curvature to interpret the normalized radar cross section , 2007 .

[43]  Suzanne T. McDaniel,et al.  Microwave backscatter from non-Gaussian seas , 2003, IEEE Trans. Geosci. Remote. Sens..

[44]  Jacqueline Boutin,et al.  Absolute Calibration of Radar Altimeters: Consistency with Electromagnetic Modeling , 2005 .