Recent advances in mid-infrared (3–6 μm) emitters

Abstract We describe the metal-organic chemical vapor deposition (MOCVD) of InAsSb/InAs multiple quantum well (MQW) and InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. We have made gain-guided, injection lasers using undoped, p-type AlAs0.16Sb0.84 for optical confinement and both strained InAsSb/InAs MQW and InAsSb/InAsP SLS active regions. The lasers and light emitting diodes (LED) utilize the semi-metal properties of a p-GaAsSb/n-InAs heterojunction as a source for electrons injected into active regions. A multiple-stage LED utilizing this semi-metal injection scheme is reported. Gain-guided, injected lasers with a strained InAsSb/InAs MQW active region operated up to 210 K in pulsed mode with an emission wavelength of 3.8–3.9 μm and a characteristic temperature of 29–40 K. We also present results for both optically pumped and injection lasers with InAsSb/InAsP SLS active regions. The maximum operating temperature of an optically pumped 3.7 μm SLS laser was 240 K. An SLS LED emitted at 4.0 μm with 80 μW of power at 300 K.

[1]  R. M. Biefeld,et al.  InAsSb‐based mid‐infrared lasers (3.8–3.9 μm) and light‐emitting diodes with AlAsSb claddings and semimetal electron injection, grown by metalorganic chemical vapor deposition , 1996 .

[2]  Robert M. Biefeld,et al.  Magnetophotoluminescence of biaxially compressed InAsSb quantum wells , 1995 .

[3]  George W. Turner,et al.  InAsSb/InAlAsSb strained quantum‐well diode lasers emitting at 3.9 μm , 1995 .

[4]  H. Le,et al.  High-efficiency, high-temperature mid-infrared ( lambda >or=4 mu m) InAsSb/GaSb lasers , 1994 .

[5]  I. Vurgaftman,et al.  High-temperature 4.5-/spl mu/m type-II quantum-well laser with Auger suppression , 1997, IEEE Photonics Technology Letters.

[6]  Alan Kost,et al.  Mid‐wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices , 1995 .

[7]  Carl R. Pidgeon,et al.  BAND ALIGNMENTS AND OFFSETS IN IN(AS,SB)INAS SUPERLATTICES , 1997 .

[8]  A. A. Allerman,et al.  Growth of n‐ and p‐type Al(As)Sb by metalorganic chemical vapor deposition , 1996 .

[9]  J. Faist,et al.  High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature , 1996 .

[10]  R. M. Biefeld The preparation of InSb and InAs1−x Sbx by metalorganic chemical vapor deposition , 1986 .

[11]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[12]  S. R. Kurtz,et al.  Electron Auger processes in mid-infrared InAsSb/InGaAs heterostructures , 1996 .

[13]  George W. Turner,et al.  175 K continuous wave operation of InAsSb/InAlAsSb quantum‐well diode lasers emitting at 3.5 μm , 1996 .

[14]  Andrew A. Allerman,et al.  Pseudomorphic InAsSb multiple quantum well injection laser emitting at 3.5 μm , 1996 .

[15]  R. M. Biefeld,et al.  Microstructures of InAs1−xSbx (x = 0.07–0.14) alloys and strained-layer superlattices , 1995 .

[16]  A. J. Howard,et al.  Magneto‐optical determination of light‐heavy hole splittings in As‐rich, InAsSb alloys and superlattices , 1995 .

[17]  Rui Q. Yang,et al.  Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .

[18]  L. R. Dawson,et al.  Midwave (4 μm) infrared lasers and light‐emitting diodes with biaxially compressed InAsSb active regions , 1994 .

[19]  Yong-Hang Zhang,et al.  CONTINUOUS WAVE OPERATION OF INAS/INASXSB1-X MIDINFRARED LASERS , 1995 .

[20]  Hao Lee,et al.  2.7‐μm InGaAsSb/AlGaAsSb laser diodes with continuous‐wave operation up to −39 °C , 1995 .

[21]  D. Zhang,et al.  Quantum cascade light-emitting diodes based on type-II quantum wells , 1997, Photonics West.