Matrix‐valued Szegő polynomials and quantum random walks
暂无分享,去创建一个
F. A. Grunbaum | L. Velazquez | M. J. Cantero | L. Moral | F. Grünbaum | L. Velázquez | L. Moral | L. Velázquez
[1] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[2] William Feller,et al. On Second Order Differential Operators , 1955 .
[3] Barry Simon,et al. The Analytic Theory of Matrix Orthogonal Polynomials , 2007, 0711.2703.
[4] Igor Jex,et al. Recurrence properties of unbiased coined quantum walks on infinite d -dimensional lattices , 2008, 0805.1322.
[5] F. Grünbaum. Block Tridiagonal Matrices and a Beefed-up Version of the Ehrenfest Urn Model , 2009 .
[6] Tosio Kato. Perturbation theory for linear operators , 1966 .
[7] Nayak Ashwin,et al. Quantum Walk on the Line , 2000 .
[8] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[9] Robin Pemantle,et al. Quantum random walks in one dimension via generating functions , 2007 .
[10] F. Alberto Grünbaum,et al. Matrix Valued Orthogonal Polynomials Arising from Group Representation Theory and a Family of Quasi-Birth-and-Death Processes , 2008, SIAM J. Matrix Anal. Appl..
[11] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz , 1921 .
[12] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[13] H. McKean. Elementary solutions for certain parabolic partial differential equations , 1956 .
[14] Mourad E. H. Ismail,et al. Three routes to the exact asymptotics for the one-dimensional quantum walk , 2003, quant-ph/0303105.
[15] L. Velazquez,et al. Minimal representations of unitary operators and orthogonal polynomials on the unit circle , 2004 .
[16] Alain Joye,et al. Spectral Analysis of Unitary Band Matrices , 2003 .
[17] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[18] Andris Ambainis,et al. QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.
[19] D. Meyer. From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.
[20] Ashwin Nayak,et al. Quantum Walk on the Line , 2000 .
[21] Andris Ambainis,et al. One-dimensional quantum walks , 2001, STOC '01.
[22] Holger Dette,et al. Matrix Measures and Random Walks with a Block Tridiagonal Transition Matrix , 2006, SIAM J. Matrix Anal. Appl..
[23] G. Reuter,et al. Spectral theory for the differential equations of simple birth and death processes , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[24] Julia Kempe,et al. Quantum random walks: An introductory overview , 2003, quant-ph/0303081.
[25] Barry Simon,et al. Orthogonal polynomials on the unit circle. Part 1 , 2005 .
[26] Barry Simon,et al. CMV matrices: Five years after , 2006, math/0603093.
[27] F. A. Grüunbaum. Random walks and orthogonal polynomials: some challenges , 2008 .