Blending of mesh objects to parametric surface
暂无分享,去创建一个
[1] Harish Mukundan,et al. Surface-surface intersection with validated error bounds , 2005 .
[2] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[3] A. Huerta,et al. NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .
[4] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[5] Ron Goldman,et al. Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..
[6] Gudrun Albrecht,et al. A comparison of local parametric C0 Bézier interpolants for triangular meshes , 2011, Comput. Graph..
[7] Lizhuang Ma,et al. G1 Continuity Triangular Patches Interpolation Based on PN Triangles , 2005, International Conference on Computational Science.
[8] Richard K. Beatson,et al. Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.
[9] Alexander A. Pasko,et al. Hybrid system architecture for volume modeling , 2000, Comput. Graph..
[10] Raphaëlle Chaine,et al. The HybridTree: Mixing skeletal implicit surfaces, triangle meshes, and point sets in a free-form modeling system , 2006, Graph. Model..
[11] Bruno Lévy,et al. Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.
[12] Hong Qin,et al. Manifold splines , 2005, SPM '05.
[13] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[14] Larry L. Schumaker,et al. Minimal energy surfaces using parametric splines , 1996, Comput. Aided Geom. Des..
[15] Matthew Ming-Fai Yuen,et al. Efficient slicing procedure based on adaptive layer depth normal image , 2011, Comput. Aided Des..
[16] Xiang Zhu,et al. Modifying the shape of NURBS surfaces with geometric constraints , 2001, Comput. Aided Des..
[17] Elaine Cohen,et al. Mixed-element volume completion from NURBS surfaces , 2012, Comput. Graph..
[18] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[19] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[20] Nicholas M. Patrikalakis,et al. Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.
[21] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[22] Jörg Peters,et al. Curved PN triangles , 2001, I3D '01.
[23] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[24] Hong Qin,et al. Manifold T-Spline , 2006, GMP.
[25] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[26] T. Hughes,et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .
[27] Antonio Huerta,et al. 3D NURBS‐enhanced finite element method (NEFEM) , 2008 .
[28] Tom Lyche,et al. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .
[29] Gerald E. Farin,et al. PNG1 triangles for tangent plane continuous surfaces on the GPU , 2008, Graphics Interface.
[30] Samir Akkouche,et al. A hybrid shape representation for free-form modeling , 2004, Proceedings Shape Modeling Applications, 2004..
[31] Bobby Bodenheimer,et al. Synthesis and evaluation of linear motion transitions , 2008, TOGS.
[32] C. Séquin,et al. Energy Minimizers for Curvature-Based Surface Functionals , 2007 .
[33] Scott Schaefer,et al. Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..
[34] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[35] Matthew Ming Fai Yuen,et al. Robust Slicing Procedure based on Surfel-Grid , 2013 .
[36] Matthias Eck,et al. Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.
[37] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[38] Wolfgang Böhm. On the efficiency of knot insertion algorithms , 1985, Comput. Aided Geom. Des..
[39] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.