Centroid Bodies and the Logarithmic Laplace Transform - A Unified Approach
暂无分享,去创建一个
[1] Bo'az Klartag,et al. Symmetrization and Isotropic Constants of Convex Bodies , 2004 .
[2] Jean Bourgain,et al. ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .
[3] Karel Hrbacek,et al. A New Proof that π , 1979, Math. Log. Q..
[4] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[5] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[6] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[7] Global versus local asymptotic theories of finite-dimensional normed spaces , 1997 .
[8] G. Paouris. ON THE EXISTENCE OF SUPERGAUSSIAN DIRECTIONS ON CONVEX BODIES , 2012 .
[9] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[10] E. Lutwak,et al. Blaschke-Santaló inequalities , 1997 .
[11] R. Lathe. Phd by thesis , 1988, Nature.
[12] On the (fi sub 2-) behaviour of linear functionals on isotropic convex bodies , 2005 .
[13] Grigoris Paouris,et al. Small ball probability estimates, ψ2-behavior and the hyperplane conjecture , 2010 .
[14] Matthieu Fradelizi,et al. Sections of convex bodies through their centroid , 1997 .
[15] R. Latala,et al. On the infimum convolution inequality , 2008, 0801.4036.
[16] B. Klartag. Uniform almost sub-Gaussian estimates for linear functionals on convex sets , 2007 .
[17] J. Bourgain. On the Isotropy-Constant Problem for “PSI-2”-Bodies , 2003 .
[18] G. Paouris. $ Ψ 2 $$\Psi_2$-Estimates for Linear Functionals on Zonoids , 2003 .
[19] Erwin Lutwak,et al. L p Affine Isoperimetric Inequalities , 2000 .
[20] C. Borell. Convex measures on locally convex spaces , 1974 .
[21] B. Klartag. On convex perturbations with a bounded isotropic constant , 2006 .
[22] V. Milman,et al. Averages of norms and quasi-norms , 1998 .
[23] B. Klartag. An isomorphic version of the slicing problem , 2003, math/0312475.
[24] Sergey G. Bobkov,et al. On concentration of distributions of random weighted sums , 2003 .
[25] G. Paouris. Concentration of mass on convex bodies , 2006 .
[26] L. Berwald,et al. Verallgemeinerung eines Mittelwertsatzes von J. Favard für Positive Konkave Funktionen , 1947 .
[27] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[28] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[29] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[30] J. Bourgain. On the distribution of polynomials on high dimensional convex sets , 1991 .
[31] Ψ2-Estimates for Linear Functionals on Zonoids , 2022 .