Centroid Bodies and the Logarithmic Laplace Transform - A Unified Approach

We unify and slightly improve several bounds on the isotropic constant of high-dimensional convex bodies; in particular, a linear dependence on the body's psi-2 constant is obtained. Along the way, we present some new bounds on the volume of L_p-centroid bodies and yet another equivalent formulation of Bourgain's hyperplane conjecture. Our method is a combination of the L_p-centroid body technique of Paouris and the logarithmic Laplace transform technique of the first named author.

[1]  Bo'az Klartag,et al.  Symmetrization and Isotropic Constants of Convex Bodies , 2004 .

[2]  Jean Bourgain,et al.  ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .

[3]  Karel Hrbacek,et al.  A New Proof that π , 1979, Math. Log. Q..

[4]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[5]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[6]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[7]  Global versus local asymptotic theories of finite-dimensional normed spaces , 1997 .

[8]  G. Paouris ON THE EXISTENCE OF SUPERGAUSSIAN DIRECTIONS ON CONVEX BODIES , 2012 .

[9]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[10]  E. Lutwak,et al.  Blaschke-Santaló inequalities , 1997 .

[11]  R. Lathe Phd by thesis , 1988, Nature.

[12]  On the (fi sub 2-) behaviour of linear functionals on isotropic convex bodies , 2005 .

[13]  Grigoris Paouris,et al.  Small ball probability estimates, ψ2-behavior and the hyperplane conjecture , 2010 .

[14]  Matthieu Fradelizi,et al.  Sections of convex bodies through their centroid , 1997 .

[15]  R. Latala,et al.  On the infimum convolution inequality , 2008, 0801.4036.

[16]  B. Klartag Uniform almost sub-Gaussian estimates for linear functionals on convex sets , 2007 .

[17]  J. Bourgain On the Isotropy-Constant Problem for “PSI-2”-Bodies , 2003 .

[18]  G. Paouris $ Ψ 2 $$\Psi_2$-Estimates for Linear Functionals on Zonoids , 2003 .

[19]  Erwin Lutwak,et al.  L p Affine Isoperimetric Inequalities , 2000 .

[20]  C. Borell Convex measures on locally convex spaces , 1974 .

[21]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[22]  V. Milman,et al.  Averages of norms and quasi-norms , 1998 .

[23]  B. Klartag An isomorphic version of the slicing problem , 2003, math/0312475.

[24]  Sergey G. Bobkov,et al.  On concentration of distributions of random weighted sums , 2003 .

[25]  G. Paouris Concentration of mass on convex bodies , 2006 .

[26]  L. Berwald,et al.  Verallgemeinerung eines Mittelwertsatzes von J. Favard für Positive Konkave Funktionen , 1947 .

[27]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[28]  G. Paouris Small ball probability estimates for log-concave measures , 2012 .

[29]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[30]  J. Bourgain On the distribution of polynomials on high dimensional convex sets , 1991 .

[31]  Ψ2-Estimates for Linear Functionals on Zonoids , 2022 .