Accounting for polarization in molecular simulation

Abstract Polarization plays an important role in the energetics of molecular systems, not the least in biomolecular systems. Most computer simulation studies of such systems do not treat electronic polarizability explicitly, but only implicitly using effective charges, dielectric permittivities or continuum electrostatics methods. Yet, the introduction of explicit polarizability into biomolecular models and force fields is unavoidable when more accurate simulation results are to be obtained. Various ways to account for polarizability in (bio)molecular simulation are reviewed with an eye to striking a balance between accuracy on the one hand and simplicity and computational efficiency on the other. The various choices to be made are listed and discussed. The most promising approach, the so-called Charge-On-Spring type of models, is treated in more detail and applied to liquid water as an example. Its implementation in the GROMOS biomolecular simulation software is sketched.

[1]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[2]  A. Warshel,et al.  What are the dielectric “constants” of proteins and how to validate electrostatic models? , 2001, Proteins.

[3]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[4]  J. B. Hasted,et al.  Liquid Water: Dielectric Properties , 1972 .

[5]  A T Brünger,et al.  Microscopic theory of the dielectric properties of proteins. , 1991, Biophysical journal.

[6]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[7]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[8]  K M Merz,et al.  New developments in applying quantum mechanics to proteins. , 2001, Current opinion in structural biology.

[9]  Hannes Jónsson,et al.  Multipole moments of water molecules in clusters and ice Ih from first principles calculations , 1999 .

[10]  Arieh Warshel,et al.  Calculations of chemical processes in solutions , 1979 .

[11]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[12]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[13]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[14]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[15]  B. Scaife,et al.  Principles of dielectrics , 1989 .

[16]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[17]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[18]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[19]  A. Warshel,et al.  Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. , 1985, Journal of molecular biology.

[20]  Shoshana J. Wodak,et al.  Molecular dynamics simulation of polarizable water by an extended Lagrangian method , 1992 .

[21]  S J Wodak,et al.  Calculations of electrostatic properties in proteins. Analysis of contributions from induced protein dipoles. , 1987, Journal of molecular biology.

[22]  Uwe Koch,et al.  Conformational dependence of the molecular charge distribution and its influence on intermolecular interactions , 1996 .

[23]  W. V. van Gunsteren,et al.  Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. , 2004, The Journal of chemical physics.

[24]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[25]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[26]  Steven J. Stuart,et al.  Effects of Polarizability on the Hydration of the Chloride Ion , 1996 .

[27]  David van der Spoel,et al.  Towards phase transferable potential functions: Methodology and application to nitrogen , 1995, The Journal of Chemical Physics.

[28]  I D Kuntz,et al.  Molecular dynamics simulations of small peptides: Dependence on dielectric model and pH , 1991, Biopolymers.

[29]  P. Hünenberger,et al.  Empirical classical interaction functions for molecular simulation , 1997 .

[30]  Peter A. Kollman,et al.  Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions , 1990 .

[31]  C. S. Ewig,et al.  An ab initio procedure for deriving atomic polarizability tensors in molecules , 2001 .

[32]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[33]  A. D. Buckingham,et al.  A theory of the dielectric polarization of polar substances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[35]  T. R. Dyke,et al.  Partially deuterated water dimers: Microwave spectra and structure , 1980 .

[36]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[37]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[38]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[39]  Jiang Zhu,et al.  Parametrization of a Generalized Born/Solvent-Accessible Surface Area Model and Applications to the Simulation of Protein Dynamics , 2002 .

[40]  Franz J. Vesely,et al.  N-particle dynamics of polarizable Stockmayer-type molecules , 1977 .

[41]  Jiali Gao,et al.  A molecular-orbital derived polarization potential for liquid water , 1998 .

[42]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[43]  Richard J. Saykally,et al.  Terahertz Laser Vibration−Rotation Tunneling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer , 1997 .

[44]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[45]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[46]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[47]  A. Dymanus,et al.  Magnetic Properties and Molecular Quadrupole Tensor of the Water Molecule by Beam‐Maser Zeeman Spectroscopy , 1970 .

[48]  Jacopo Tomasi,et al.  An Integrated Effective Fragment—Polarizable Continuum Approach to Solvation: Theory and Application to Glycine , 2002 .

[49]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[50]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[51]  T. Darden,et al.  Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions , 2000 .

[52]  Donald E. Williams Representation of the molecular electrostatic potential by atomic multipole and bond dipole models , 1988 .

[53]  Sotiris S. Xantheas,et al.  The parametrization of a Thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2–21) and the phonon spectrum of ice Ih , 1999 .

[54]  Berk Hess,et al.  An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model. , 2004, The Journal of chemical physics.

[55]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[56]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[57]  Harry A. Stern,et al.  Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation , 2003 .

[58]  A. Warshel,et al.  Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[60]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[61]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[62]  Per Linse,et al.  Molecular dynamics simulations of polarizable water at different boundary conditions , 2000 .

[63]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[64]  A. Warshel,et al.  Calculations of electrostatic interactions in biological systems and in solutions , 1984, Quarterly Reviews of Biophysics.

[65]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[66]  Mark S. Gordon,et al.  A combined discrete/continuum solvation model: Application to glycine , 2000 .

[67]  Paul Drude,et al.  The Theory of Optics , 1959 .

[68]  Michele Parrinello,et al.  Structural, electronic, and bonding properties of liquid water from first principles , 1999 .

[69]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[70]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[71]  Han Myoung Lee,et al.  Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer , 2000 .

[72]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[73]  Jianshu Cao,et al.  Theory and simulation of polar and nonpolar polarizable fluids , 1993 .

[74]  Stephen C. Parker,et al.  Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water , 1998 .

[75]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[76]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[77]  Ruhong Zhou,et al.  Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model , 1999 .

[78]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[79]  U. Kaatze Complex Permittivity of Water as a Function of Frequency and Temperature , 1989 .

[80]  Herman J. C. Berendsen,et al.  A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: The water-water interaction , 2000 .

[81]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[82]  R. H. Ritchie,et al.  Dielectric effects in biopolymers: The theory of ionic saturation revisited , 1985 .

[83]  Michiel Sprik,et al.  COMPUTER-SIMULATION OF THE DYNAMICS OF INDUCED POLARIZATION FLUCTUATIONS IN WATER , 1991 .

[84]  R. Clausius,et al.  Die mechanische Wärmetheorie , 1876 .

[85]  J. Ramstein,et al.  Energetic coupling between DNA bending and base pair opening. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[86]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.

[87]  George Maroulis,et al.  Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects , 1998 .

[88]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[89]  Giancarlo Ruocco,et al.  Computer simulation of polarizable fluids: a consistent and fast way for dealing with polarizability and hyperpolarizability , 1994 .

[90]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[91]  Harry A. Stern,et al.  Fluctuating Charge, Polarizable Dipole, and Combined Models: Parameterization from ab Initio Quantum Chemistry , 1999 .

[92]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[93]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[94]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[95]  Qiang Cui,et al.  Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine , 2002 .

[96]  Daniel Borgis,et al.  A semiempirical quantum polarization model for water , 1995 .

[97]  Berk Hess,et al.  Flexible constraints : An adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water , 2002 .

[98]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[99]  Jiali Gao,et al.  Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations , 1997 .

[100]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[101]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[102]  Ola Engkvist,et al.  Intermolecular Potential for the 1,2-Dimethoxyethane−Water Complex , 1996 .

[103]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[104]  James Andrew McCammon,et al.  Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water , 1990 .

[105]  W. Thiel,et al.  Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches , 1996 .

[106]  Jacopo Tomasi,et al.  The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution , 2001 .

[107]  Shoshana J. Wodak,et al.  Extended Lagrangian formalism applied to temperature control and electronic polarization effects in molecular dynamics simulations , 1995 .

[108]  Wilfred F. van Gunsteren,et al.  Development of a simple, self-consistent polarizable model for liquid water , 2003 .

[109]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[110]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[111]  Jacopo Tomasi,et al.  Glycine and alanine: a theoretical study of solvent effects upon energetics and molecular response properties , 2000 .

[112]  Omar A. Karim,et al.  Simulation of an anion in water: effect of ion polarizability , 1991 .

[113]  Arnold T. Hagler,et al.  Geometry‐dependent atomic charges: Methodology and application to alkanes, aldehydes, ketones, and amides , 1995, J. Comput. Chem..

[114]  Larry A. Curtiss,et al.  Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity , 1979 .

[115]  Dean R. Haeffner,et al.  Electron distribution in water , 2000 .

[116]  Aaron Lefohn,et al.  A Multistate Empirical Valence Bond Approach to a Polarizable and Flexible Water Model , 2001 .

[117]  Kazimierz Krynicki,et al.  Pressure and temperature dependence of self-diffusion in water , 1978 .

[118]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[119]  Jiali Gao,et al.  Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials , 2007 .

[120]  R. C. Weast Handbook of chemistry and physics , 1973 .

[121]  Arieh Warshel,et al.  Microscopic simulations of macroscopic dielectric constants of solvated proteins , 1991 .