Product Kernel Interpolation for Scalable Gaussian Processes
暂无分享,去创建一个
Andrew Gordon Wilson | Kilian Q. Weinberger | Jacob R. Gardner | Geoff Pleiss | Ruihan Wu | Geoff Pleiss | Ruihan Wu | A. Wilson | J. Gardner
[1] Iain Murray. Introduction To Gaussian Processes , 2008 .
[2] Jasper Snoek,et al. Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.
[3] Suchi Saria,et al. A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure , 2015, NIPS.
[4] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[5] Alexis Boukouvalas,et al. GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..
[6] Yousef Saad,et al. Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature , 2017, SIAM J. Matrix Anal. Appl..
[7] R. Keys. Cubic convolution interpolation for digital image processing , 1981 .
[8] Carl E. Rasmussen,et al. Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.
[9] Hongyuan Zha,et al. Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..
[10] Roderick Murray-Smith,et al. Hierarchical Gaussian process mixtures for regression , 2005, Stat. Comput..
[11] David Ginsbourger,et al. Additive Kernels for Gaussian Process Modeling , 2011, 1103.4023.
[12] Kai Li,et al. Sparse Multi-Output Gaussian Processes for Medical Time Series Prediction , 2017 .
[13] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[14] T. Ensslin,et al. Improving stochastic estimates with inference methods: calculating matrix diagonals. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Andrew Gordon Wilson,et al. Scalable Log Determinants for Gaussian Process Kernel Learning , 2017, NIPS.
[16] Andrew Gordon Wilson,et al. Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.
[17] Ahmed M. Alaa,et al. Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes , 2016, IEEE Transactions on Biomedical Engineering.
[18] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[19] Joshua B. Tenenbaum,et al. Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.
[20] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[21] Andrew Gordon Wilson,et al. Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.
[22] Suchi Saria,et al. A Bayesian Nonparametic Approach for Estimating Individualized Treatment-Response Curves , 2016, ArXiv.
[23] Neil D. Lawrence,et al. Fast Nonparametric Clustering of Structured Time-Series , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[25] David A. Clifton,et al. Multitask Gaussian Processes for Multivariate Physiological Time-Series Analysis , 2015, IEEE Transactions on Biomedical Engineering.
[26] Y. Saad,et al. An estimator for the diagonal of a matrix , 2007 .
[27] Ethem Alpaydin,et al. Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..
[28] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[29] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[30] M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .
[31] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[32] John P. Cunningham,et al. Fast Gaussian process methods for point process intensity estimation , 2008, ICML '08.
[33] Kilian Q. Weinberger,et al. Psychophysical Detection Testing with Bayesian Active Learning , 2015, UAI.
[34] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[35] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[36] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[37] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[38] Bernhard Schölkopf,et al. Bayesian Experimental Design of Magnetic Resonance Imaging Sequences , 2008, NIPS.
[39] Andrew Gordon Wilson,et al. Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces , 2015, AISTATS.
[40] Stephen J. Roberts,et al. Improved Stochastic Trace Estimation using Mutually Unbiased Bases , 2016, UAI.