On the convergence of projection methods: Application to the decomposition of affine variational inequalities

In this paper, we first discuss the global convergence of symmetric projection methods for solving nonlinear monotone variational inequalities under a cocoercivity assumption. A similar analysis is applied to asymmetric projection methods, when the mapping is affine and monotone. Under a suitable choice of the projection matrix, decomposition can be achieved. It is proved that this scheme achieves a linear convergence rate, thus enhancing results previously obtained by Tseng (Ref. 1) and by Luo and Tseng (Ref. 2).